Answer: 90 m/s, 70 m/s
Explanation:
Given
A car travels 100 m east for 4 seconds and then turn around
goes back west for 50m in 1 sec
Distance traveled in the east is 
Distance traveled in the west is 
Total distance
total displacement
total time 
Average speed

Average velocity

E=F*d/2 = k*d * d/2 =>
d^2= 2*E/k
d= sqrt(2*E/k)=sqrt(2*1J/1000N/m)=sqrt(20m^2)/100=0.045 m = 45 mm
Answer:
Conduction, radiation and convection all play a role in moving heat between Earth's surface and the atmosphere. Since air is a poor conductor, most energy transfer by conduction occurs right near Earth's surface
Answer:
a) K = 3 MeV b) K= 1.5 MeV
Explanation:
We can solve this experiment using the equation of the magnetic force with Newton's second law, where the acceleration is centripetal.
F = q v x B
We can also write this equation based on the modules of the vectors
F = qv B sin θ
With Newton's second law
F = ma
F = m v² / r
q v B = m v² / r
v = q B r / m
The kinetic energy is
K = ½ m v²
Substituting
K = ½ m (q B r/ m)²
K = ½ B² r² q² / m
K = (½ B² R²) q²/m
The amount in brackets does not change during the experiment
K = A q² / m
For the proton
K = 3.0 10⁶eV (1.6 10⁻¹⁹ J / 1eV) = 4.8 10⁻¹³ J
With this data we can find the amount we call A
A = K m/q²
A = 4.8 10⁻¹³ 1.67 10⁻²⁷ /(1.6 10⁻¹⁹)²
A = 3.13 10⁻²
With this value we can write the equation
K = 3.13 10⁻² q² / m
Alpha particle
m = 4 uma = 4 1.66 10⁻²⁷ kg
K = 3.13 10⁻² (2 1.6 10⁻¹⁹)² / 4.0 1.66 10⁻²⁷
K = 4.82 10⁻¹³ J ((1 eV / 1.6 10⁻¹⁹ J) = 3 10⁶ eV
K = 3 MeV
Deuteron
K = 3.13 10⁻² (1.6 10⁻¹⁹)²/2 1.66 10⁻²⁷
K = 2.4 10⁻¹³ J (1eV / 1.6 10⁻¹⁹J)
K = 1.5 10⁶ eV
K= 1.5 MeV
Answer:
Explanation:
Given
No of atoms of hydrogen 
Temperature of room 
Thermal energy of the atoms is given by

where k=boltzmann constant


Hence the energy of the atoms is 