1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dsp73
1 year ago
11

A flowerpot falls from a window sill 36.5 m

Physics
1 answer:
hram777 [196]1 year ago
7 0

When a flowerpot falls from a window sill 36.5 m

above the sidewalk, then the velocity of the flowerpot is 26.7 m/s.

From Newton's third equation of motion,

v^2 = u^2 + 2gh

where,

h is the height of the object or body from ground

u is the initial velocity of the body or object

v is the final velocity of the body or object

g is the acceleration due to gravity

Now, as we know that

Flowerpot is at rest. So, u = 0

g = 9.81m/s^2

h = 36.5m

By substituting all the values, we get

v^2 = 2 × 9.81 × 36.5

= 716.13

v = 26.7m/s

Thus, we concluded that when a flowerpot falls from a window sill 36.5 m

above the sidewalk, then the velocity of the flowerpot is 26.7 m/s.

learn more about Newton's equation of law of motion:

brainly.com/question/8898885

#SPJ9

You might be interested in
A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before
Darina [25.2K]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before  \: it \: comes \: to \: rest \:( s_{2} )}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity   = v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \:  s_{1} \: penetration =  \dfrac{v}{2}  \:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{s_{1} =  \dfrac{3}{100}  = 0.03 \: m}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{ {v}^{2}  =  {u}^{2} + 2as }

\\

\dashrightarrow\:\: \sf{  \bigg(\dfrac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1}}

\\

\dashrightarrow\:\: \sf{  \dfrac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03  }

\\

\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{\dfrac{ -  3{v}^{2} }{4}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{ - 3 {v}^{2} }{4 \times 0.06}  }

\\

\dashrightarrow\:\: \sf{ a =  \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }

\\

\:\:\:\:\bullet\:\:\:\sf{  Initial\:velocity=v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }

\\

\dashrightarrow\:\: \sf{  {v}^{2}  =  {u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{{0}^{2}  =  {v}^{2}  + 2 \times  \dfrac{ - 25 {v}^{2} }{2}  \times s  }

\\

\dashrightarrow\:\: \sf{ -  {v}^{2}  =  - 25 {v}^{2}  \times s  }

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{ -  {v}^{2} }{ - 25 {v}^{2} }}

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{1}{25} }

\\

\dashrightarrow\:\: \sf{ s = 0.04 \: m }

\\

☯ For left penetration (s₂)

\\

\dashrightarrow\:\: \sf{s =  s_{1} +  s_{2}  }

\\

\dashrightarrow\:\: \sf{  0.04 = 0.03 +  s_{2}}

\\

\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }

\\

\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}

\\

\star\:\sf{Left \: penetration \: before  \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\

4 0
2 years ago
Which would you expect to freeze faster pure water or salt solution why?
krek1111 [17]
Pure water.

A salt solution contains impurities whereas pure water will not contain any impurities.

Impurities increase the boiling point (freezing point) of a substance.

Thus, I would expect the pure water solution to freeze faster than the salt solution.
6 0
3 years ago
the pygmy shrew has an average mass of 2.0 g if 49 of these shrew are placed on a spring scale with a spring constant of 24 N/m
olga_2 [115]

Answer:

Spring's displacement, x = -0.04 meters.

Explanation:

Let the spring's displacement be x.

Given the following data;

Mass of each shrew, m = 2.0 g to kilograms = 2/1000 = 0.002 kg

Number of shrews, n = 49

Spring constant, k = 24 N/m

We know that acceleration due to gravity, g is equal to 9.8 m/s².

To find the spring's displacement;

At equilibrium position:

Fnet = Felastic + Fg = 0

But, Felastic = -kx

Total mass, Mt = nm

Fg = -Mt = -nmg

-kx -nmg = 0

Rearranging, we have;

kx = -nmg

Making x the subject of formula, we have;

x = \frac {-nmg}{k}

Substituting into the formula, we have;

x = \frac {-49*0.002*9.8}{24}

x = \frac {-0.9604}{24}

x = -0.04 m

Therefore, the spring's displacement is -0.04 meters.

3 0
2 years ago
What is the mass of a man who accelerates 4 m/s2 under the action of a 200 N net force?
Over [174]

Answer:

\huge  \boxed{ \boxed{50 \:   kg }}

Explanation:

The mass of the man can be found by using the formula

m =  \frac{f}{a}  \\

f is the force

a is the acceleration

From the question we have

m =  \frac{200}{4}  \\

We have the final answer as

<h3>50 kg</h3>

Hope this helps you

7 0
2 years ago
Which choice correctly ranks these items from smallest to largest?
Vera_Pavlovna [14]

Answer:

your answer is:  electron → carbon atom → quantum dot → E. coli bacteria cell → comma

Explanation:

6 0
3 years ago
Other questions:
  • What types of collisions can result from making unsafe passes?
    11·1 answer
  • Explain how convection currents help mushrooms reproduce. Which spheres are interacting in this example?
    12·1 answer
  • What type of air mass brings a hurricane?
    12·1 answer
  • What is a mycorrhiza
    14·2 answers
  • Describe how a change in resistance would affect the current in a circuit.
    5·1 answer
  • Explain the difference between velocity and acceleration.​
    9·2 answers
  • If electrical current is moving through a horizontal wire toward your face, what direction is the induced magnetic field?
    10·1 answer
  • Running a 5k would be an example of a good short-term goal for someone who is just starting out running.
    11·2 answers
  • A 5 Kg bowling ball is thrown at a stationary 1.6 Kg bowling pin at 5 m/s. If the final velocity of the ball is 2.5 m/s. The fin
    10·1 answer
  • A toy doll and a toy robot are standing on a frictionless surface facing each other. The doll has a mass of 0. 20 kg, and the ro
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!