In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Answer:
v (speed) = S / t = 4 * 400 m / (6 * 60 sec) = 4.4 m/s
The average velocity is zero because there is no net vector displacement.
Answer: Electromagnetic waves (Ultraviolet light, between 100 nm and 380 nm)
Explanation:
Solar cells work by the photoelectric effect, which consists of the emission of electrons (electric current) when light (electromagnetic waves) falls on a metal surface under certain conditions.
In this sense, the portion of the electromagnetic spectrum this cells use is Ultraviolet light (UV) from the Sun, whose wavelength is approximately between 100 nm and 380 nm.
It is important to note, this is a type of electromagnetic radiation that is not visible to the human eye.