I have a strange hunch that there's some more material or previous work
that goes along with this question, which you haven't included here.
I can't easily find the dates of Mercury's extremes, but here's some of the
other data you're looking for:
Distance at Aphelion (point in it's orbit that's farthest from the sun):
<span><span><span><span><span>69,816,900 km
0. 466 697 AU</span>
</span>
</span>
</span>
<span>
Distance at Perihelion
(</span></span><span>point in it's orbit that's closest to the sun):</span>
<span><span><span><span>46,001,200 km
0.307 499 AU</span> </span>
Perihelion and aphelion are always directly opposite each other in
the orbit, so the time between them is 1/2 of the orbital period.
</span><span>Mercury's Orbital period = <span><span>87.9691 Earth days</span></span></span></span>
1/2 (50%) of that is 43.9845 Earth days
The average of the aphelion and perihelion distances is
1/2 ( 69,816,900 + 46,001,200 ) = 57,909,050 km
or
1/2 ( 0.466697 + 0.307499) = 0.387 098 AU
This also happens to be 1/2 of the major axis of the elliptical orbit.
Force is the change in momentum over a specific time. The change of momentum is therefore the force multiplied by the time that the force acts, so 3000x4.0=12000 N s=12000 kg m/s
Answer:

Explanation:
using the law of the conservation of energy:


where K is the spring constant, x is the spring compression, N is the normal force of the block,
is the coefficiet of kinetic friction and d is the distance.
Also, by laws of newton, N is calculated by:
N = mg
N = 3.35 kg * 9.81 m/s
N = 32.8635
So, Replacing values on the first equation, we get:

solving for
:

<span>The equation of motion for a rocket in
vertical flight can be obtained from newton’s second law of motion and is
constant-mass system. The equation of motion for a body mass varies with time and mass. When force acts on rocket, the rocket
will accelerate in the direction of force. Therefore, force is equal to the
change in momentum per change in time. For constant mass, force equals mass
times acceleration.</span>
The relationship between frequency and wavelength for an electromagnetic wave is

where
f is the frequency

is the wavelength

is the speed of light.
For the light in our problem, the frequency is

, so its wavelength is (re-arranging the previous formula)