Answer:
1.2 s
Explanation:
We'll begin by calculating the length (i.e distance) of the ramp. This can be obtained by using pythagoras theory as illustrated below:
NOTE: Length of the ramp is the Hypothenus i.e the longest side.
Let the Lenght of the ramp be 's'. The value of x can be obtained as follow:
s² = 4² + 3²
s² = 16 + 9
s² = 25
Take the square root of both side
s = √25
s = 5 m
Thus the length of the ramp is 5 m
Next, we shall determine the final velocity of the ball. This can be obtained as follow:
Initial velocity (u) = 3 m/s
Acceleration (a) = 2 m/s²
Distance (s) = 5 m
Final velocity (v) =?
v² = u² + 2as
v² = 3² + (2 × 2 × 5)
v² = 9 + 20
v² = 29
Take the square root of both side
v = √29
v = 5.39 m/s
Finally, we shall determine the time taken for the ball to reach the final position. This can be obtained as follow:
Initial velocity (u) = 3 m/s
Acceleration (a) = 2 m/s²
Final velocity (v) = 5.39 m/s
Time (t) =?
v = u + at
5.39 = 3 + 2t
Collect like terms
5.39 – 3 = 2t
2.39 = 2t
Divide both side by 2
t = 2.39 / 2
t = 1.2 s
Thus, it will take 1.2 s for the ball to get to the final position.
The second part of the question can not be fully answered because it is not proven that there is or isn’t others life forms in this universe. personallyi think that there is but whatva