Answer:
The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Explanation:
Given that,
Mass of object = 5 kg
Speed = 3 m/s
Mass of stationary object = 3 kg
Moving object deflected = 30°
Stationary object deflected = 31°
We need to calculate the velocity of each ball after collision
Using conservation of momentum
Along x-axis

Put the value into the fomrula


....(I)
Along y -axis

Put the value into the formula

...(II)
From equation (I) and (II)


Put the value of v₁ in equation (I)



Hence, The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Answer: its 50
Explanation:
im waffling does anybody have syrup
The sun's intensity for an outer planet located at a distance 6r from the sun is 5.55 W/m². The result is obtained by using the inverse square law formula.
<h3>What is the Inverse Square Law formula?</h3>
The Inverse Square Law formula describes the intensity of light is inversely proportional to the square of the distance. It can be expressed as

Where
- I₁ = Intensity at distance 1 (W/m²)
- I₂ = Intensity at distance 2 (W/m²)
- d₁ = distance 1 from a light source (m)
- d₂ = distance 2 from a light source (m)
Given the case the sun's intensity is 200 W/m² for an inner planet at the distance r. If an outer planet is at a distance 6r, what is the sun's intensity?
By using the inverse square law formula, the sun's intensity for an outer planet is




I₂ = 5.55 W/m²
Hence, the sun's intensity for a planet at a distance 6r from the sun is 5.55 W/m².
Learn more about intensity of light here:
brainly.com/question/13155277
#SPJ4