Answer:
The velocity of the other fragment immediately following the explosion is v .
Explanation:
Given :
Mass of original shell , m .
Velocity of shell , + v .
Now , the particle explodes into two half parts , i.e .
Since , no eternal force is applied in the particle .
Therefore , its momentum will be conserved .
So , Final momentum = Initial momentum
The velocity of the other fragment immediately following the explosion is v .
Answer:
Explanation:
Work done in lifting the weight once = mgh
= 20 x 9.8 x (1.9+1.7)
= 705.6 J
= 705.6 / 4.2 calorie
= 168 cals
Total energy to be spent = 600 x 10³ cals
No of times weight is required to be lifted
= 600 x 10³ / 168
= 3.57 x 10³ times
Total time to be taken = 2 x 3.57 x 10³
= 7.14 x 10³ s
=119 minutes .
the answer is d they are essential to all ecosystems
The answer is Eficiency=T<< Tox100
The original kinetic energy will be 0 J and the final kinetic energy will be 7500 J and the amount of work utilized will be similar to the final kinetic energy i.e., 7500 J.
<u>Explanation:</u>
As it is known that the kinetic energy is defined as the energy exhibited by the moving objects. So the kinetic energy is equal to the product of mass and square of the velocity attained by the car. Thus,
So the initial kinetic energy will be the energy exerted by the car at the initial state when the initial velocity is zero. Thus the initial kinetic energy will be zero.
The final kinetic energy is
= 7500 J
As the work done is the energy required to start the car from zero velocity to 5 m/s velocity.
Work done = Final Kinetic energy - Initial Kinetic energy
Thus the work utilized for moving the car is
Work done = 7500 J - 0 J = 7500 J
Thus, the initial kinetic energy of the car is zero, the final kinetic energy is 7500 J and the work utilized by the car is also 7500 J.