Answer:
A lightning conductor is made up of a sharp pointed metal (usually copper metal, as it is a very good conductor) connected directly to the ground. ... The lightning conductor is placed higher than the roof so that if lightning strikes, it strikes the conductor before it can reach the house.
Explanation:
A lightning conductor is made up of a sharp pointed metal (usually copper metal, as it is a very good conductor) connected directly to the ground. ... The lightning conductor is placed higher than the roof so that if lightning strikes, it strikes the conductor before it can reach the house.
Answer:
Explanation:
b) Gravity reduces the initial upward velocity to zero in a time of
t = v/g = 40/10 = 4 s
a) h = v₀t + ½gt² = 40(4) + ½(-10)4² = 80 m
or
v² = u² + 2as
h = (0² - 40²) / 2(-10) = 80 m
Answer:
1020g
Explanation:
Volume of can=

Mass of can=80g=
1Kg=1000g
Density of lead=
By using 
We have to find the mass of lead which shot can it carry without sinking in water.
Before sinking the can and lead inside it they are floating in the water.
Buoyancy force =

Where
Density of water
Mass of can
Mass of lead
Volume of can
Substitute the values then we get




Hence, 1020 grams of lead shot can it carry without sinking water.
Answer:
the required revolution per hour is 28.6849
Explanation:
Given the data in the question;
we know that the expression for the linear acceleration in terms of angular velocity is;
= rω²
ω² =
/ r
ω = √(
/ r )
where r is the radius of the cylinder
ω is the angular velocity
given that; the centripetal acceleration equal to the acceleration of gravity a
= g = 9.8 m/s²
so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m
Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m
so we substitute
ω = √( 9.8 m/s² / 3909.87 m )
ω = √0.002506477 s²
ω = 0.0500647 ≈ 0.05 rad/s
we know that; 1 rad/s = 9.5493 revolution per minute
ω = 0.05 × 9.5493 RPM
ω = 0.478082 RPM
1 rpm = 60 rph
so
ω = 0.478082 × 60
ω = 28.6849 revolutions per hour
Therefore, the required revolution per hour is 28.6849
Answer: Last option
2.27 m/s2
Explanation:
As the runner is running at a constant speed then the only acceleration present in the movement is the centripetal acceleration.
If we call a_c to the centripetal acceleration then, by definition

in this case we know the speed of the runner

The radius "r" will be the distance from the runner to the center of the track



The answer is the last option