Hello army :,) Here’s the answer:
B)
(3.19 * 10^8)/(8.23 * 10^5) = 3.19/8.23 * 10^8/10^5
= 3.19/8.23 * 10^3 = 0.387606318 * 10^3
= 387.606318
The population of US is 387 times larger than that of Ohio's
Answer:
17. (20.4)
Step-by-step explanation:
x times 1.20=20
x is how many packages
You need to use basic algebra for this.
For this I’ll use o as the items and p for the payment. First you need to find out how long it took for all the items to scan, so if it took each item 2 seconds to be scanned you need to times the total number of items (o) by two e.g. o x 2 = 62 items times two seconds which is equivalent to 62 seconds (1.02 minutes) after this step you need to minus the total time it took to scan the items for the transaction time (2 minutes) e.g. 2.00 - 1.02 = 2.58 minutes.
Hope this helped :)
Answer:
(a) The average cost function is 
(b) The marginal average cost function is 
(c) The average cost approaches to 95 if the production level is very high.
Step-by-step explanation:
(a) Suppose
is a total cost function. Then the average cost function, denoted by
, is

We know that the total cost for making x units of their Senior Executive model is given by the function

The average cost function is

(b) The derivative
of the average cost function, called the marginal average cost function, measures the rate of change of the average cost function with respect to the number of units produced.
The marginal average cost function is

(c) The average cost approaches to 95 if the production level is very high.
![\lim_{x \to \infty} (\bar{C}(x))=\lim_{x \to \infty} (95+\frac{230000}{x})\\\\\lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)\\\\=\lim _{x\to \infty \:}\left(95\right)+\lim _{x\to \infty \:}\left(\frac{230000}{x}\right)\\\\\lim _{x\to a}c=c\\\lim _{x\to \infty \:}\left(95\right)=95\\\\\mathrm{Apply\:Infinity\:Property:}\:\lim _{x\to \infty }\left(\frac{c}{x^a}\right)=0\\\lim_{x \to \infty} (\frac{230000}{x} )=0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cbar%7BC%7D%28x%29%29%3D%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%2895%2B%5Cfrac%7B230000%7D%7Bx%7D%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29%5Cright%5D%3D%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cpm%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%5C%5C%5C%5C%3D%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%2B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Cfrac%7B230000%7D%7Bx%7D%5Cright%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7Dc%3Dc%5C%5C%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%3D95%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3AInfinity%5C%3AProperty%3A%7D%5C%3A%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%7D%5Cleft%28%5Cfrac%7Bc%7D%7Bx%5Ea%7D%5Cright%29%3D0%5C%5C%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cfrac%7B230000%7D%7Bx%7D%20%29%3D0)

Answer:
136 
Step-by-step explanation:
Well if you find the lateral area (the area of the rectangles on the sides) to get 112, so you just need to add that to the triangles and for those (they add up to 36) you can just use the formula for the area of a triangle, which is
.
Hope this helps :)