Option D:
Segment DF
Solution:
Let us first define the relationship between the side and angle in triangle.
<u>Relationship between the side and angle in triangle:</u>
- The shortest side is always opposite to the smallest interior angle.
- The largest side is always opposite to the largest interior angle.
To find the largest side in ΔDEF:
Largest angle in ΔDEF is ∠E = 73°
So, the side opposite to 73° is DF.
Therefore, Option D is the correct answer.
Hence the segment DF is the longest side in the ΔDEF.
I used to look at the examples i can’t remember now what it is but look at the examples
Answer:
J(-2, -0.5), K(0, 2), L(-2, -1)
Step-by-step explanation:
The answer is x = 10, y = 10.
Step 1: rearrange the second equation for y.
Step 2: substitute y from the second equation into the first equation.
Step 3. Calculate y.
Step 1.
<span>The second equation is: 6x + 3y = 90
Divide both sides of the equation by 3:
(6x + 3y)/3 = 90/3
6x/3 + 3y/3 = 30
2x + y = 30
Rearrange the equation:
y = 30 - 2x
Step 2.
</span>Substitute y from the second equation (y = 30 - 2x) into the first equation:
<span>15x + 9y = 240
15x + 9(30 - 2x) = 240
15x + 270 - 18x = 240
15x - 18x = 240 - 270
-3x = -30
x = -30/-3
x = 10
Step 3.
Since </span>y = 30 - 2x and x = 10, then:
y = 30 - 2 * 10
y = 30 - 20
y = 10
Answer:
On occasions you will come across two or more unknown quantities, and two or more equations
relating them. These are called simultaneous equations and when asked to solve them you
must find values of the unknowns which satisfy all the given equations at the same time.
Step-by-step explanation:
1. The solution of a pair of simultaneous equations
The solution of the pair of simultaneous equations
3x + 2y = 36, and 5x + 4y = 64
is x = 8 and y = 6. This is easily verified by substituting these values into the left-hand sides
to obtain the values on the right. So x = 8, y = 6 satisfy the simultaneous equations.
2. Solving a pair of simultaneous equations
There are many ways of solving simultaneous equations. Perhaps the simplest way is elimination. This is a process which involves removing or eliminating one of the unknowns to leave a
single equation which involves the other unknown. The method is best illustrated by example.
Example
Solve the simultaneous equations 3x + 2y = 36 (1)
5x + 4y = 64 (2) .
Solution
Notice that if we multiply both sides of the first equation by 2 we obtain an equivalent equation
6x + 4y = 72 (3)
Now, if equation (2) is subtracted from equation (3) the terms involving y will be eliminated:
6x + 4y = 72 − (3)
5x + 4y = 64 (2)
x + 0y = 8