1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
11 months ago
15

Which expression is equivalent to 1.5 raised to the fifth power divided by 0.7 raised to the fourth power, all raised to the thi

rd power?
1.5 raised to the fifteenth power divided by 0.7 raised to the twelfth power
1.5 raised to the eighth power divided by 0.7 raised to the seventh power
2.13
2.115
Mathematics
2 answers:
harina [27]11 months ago
4 0

The expression which is equivalent to the given expression as in the task content is; 1.5 raised to the fifteenth power divided by 0.7 raised to the twelfth power.

<h3>What is the expression which is equivalent to the given expression?</h3>

According to the task content, it follows that the expression given is;

(1.5⁵/0.7⁴)³

= 1.5^(3×5) /0.7^(4×3)

= 1.5¹⁵/0.7¹².

Hence, the expression which is equivalent is; 1.5 raised to the fifteenth power divided by 0.7 raised to the twelfth power.

Read more on exponents;

brainly.com/question/847241

#SPJ1

MaRussiya [10]11 months ago
4 0

Answer: Its A

Step-by-step explanation: I did the test lol

You might be interested in
Estimate 212,514 + 28,542 What is it pls help
Oduvanchick [21]
241,056. Use a calculator.
5 0
3 years ago
One day when Terry went to school the temperature outside was –15 degrees Fahrenheit. In Terry's classroom the temperature was 6
Dominik [7]
Well, to find the answer to this problem you have to change the -15 to a positive (+15) and add the two numbers together. And, 15 + 68 = +83 degrees.

So, your answer is: A. +83 degrees.

It's really easy because all your doing is changing the -15 to a positive 15 and adding the two numbers together to get your answer.

Hope I helped!

- Debbie
7 0
2 years ago
Read 2 more answers
Graph each piecewise function. Then identify the properties.
Alexxx [7]

Answer:

Domain: (-∞, -2) U [-2, 1] U (1, ∞)

Range: (-∞, 2) U [-3, -∞)

Step-by-step explanation:

This function is composed of three polynomial functions, a positive slope line m = \frac{1}{2}, whose domain is all real numbers, a horizontal line, and a negative slope line m = -1 whose domain is all real numbers.

Observe in the attached graph that the function has a discontinuity in x = -2, it has a jump.

When x approaches -2 by the left hand, y tends to 2. But when x approaches -2 from the right y tends to -3.

In addition, the function comes from -∞, then has a maximum value at y = 2 and finally derece up to -∞

Then we can conclude that for this piecewise function:

Domain: (-∞, -2) U [-2, 1] U (1, ∞) All Real Numbers

Range: (-∞, 2) U [-3, -∞)

4 0
3 years ago
If you know this could you help me?
liq [111]

Answer:

Equation : y = -0.5x − 8

Step-by-step explanation:

because i grabbed two points and plugged them in im not very good at explaining but im 99% sure thats right

4 0
2 years ago
Im having a mental breakdown can someone please just do this for me
topjm [15]
The slopes of the original function y = |x| are m = 1 and m = -1 (m is the variable used to represent slope).

when you add a coefficient (number) in front of |x|, it will either make the slopes steeper or more flat. the larger the value of the coefficient, the steeper the slope will be (vice versa for a coefficient smaller than 1, which would make the slope more flat than the parent(original) function).

because these are absolute value functions, they will have two slopes. one slope for the end going up from left to right, and one for the end going down from left to right. this means that one slope must be positive and the other slope must be negative for each function.

with this in mind, the slopes of y = 2|x| are m = 2 and m = -2. the coefficient of 2 narrows the function by a factor of 2 (it is twice as narrow as the parent function). the same rules apply to y = 4|x| with the slopes of this function as m = -4 and m = 4 (it is 4 times narrower than the parent function).

with the fraction coefficients, the function is being widened. therefore, the slopes of y = 1/2 |x| are m = -1/2 and m = 1/2. the slopes of y = 1/5 |x| are m = -1/5 and m = 1/5.
6 0
2 years ago
Other questions:
  • To drive safely along a road, drivers need to maintain a speed of at least 50 miles per hour and at most 60 miles per hour. Writ
    7·1 answer
  • What is the y-intercept of the line shown?
    8·1 answer
  • I need to know what the answer is and how to get it.
    7·1 answer
  • Which math operation determines the following pattern?
    14·2 answers
  • Can someone solve this please?
    11·1 answer
  • Ram gives his son 100 naira on one day, 50 naira on the second day, 25 naira on the third day and so on. What will be the total
    7·1 answer
  • I would appreciate it so much if anyone helps me on these answers please!
    8·1 answer
  • Please help this was due yesterday and in less than an hour it won't be worth any points
    14·2 answers
  • How do you round 9372282 to the nearest 1000
    6·2 answers
  • 6 first-year teachers and 4 experienced teachers attended a school staff meeting meeting. What percentage of the teachers in the
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!