Answer:
The amount of the chemical flows into the tank during the firs 20 minutes is 4200 liters.
Step-by-step explanation:
Consider the provided information.
A chemical flows into a storage tank at a rate of (180+3t) liters per minute,
Let
is the amount of chemical in the take at <em>t </em>time.
Now find the rate of change of chemical flow during the first 20 minutes.

![\int\limits^{20}_{0} {c'(t)} \, dt =\left[180t+\dfrac{3}{2}t^2\right]^{20}_0](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B20%7D_%7B0%7D%20%7Bc%27%28t%29%7D%20%5C%2C%20dt%20%3D%5Cleft%5B180t%2B%5Cdfrac%7B3%7D%7B2%7Dt%5E2%5Cright%5D%5E%7B20%7D_0)


So, the amount of the chemical flows into the tank during the firs 20 minutes is 4200 liters.
I cannot see the question
8/20 is greater than 2/10. If you were to make the denominators the same, by mulipling 2x2 and 10x2, you would get 4/20, which is less than 8/20.
Answer:
Step-by-step explanation:
I am looking for the answers and I can’t find it
Answer:
30 mph
Step-by-step explanation:
Let d = distance (in miles)
Let t = time (in hours)
Let v = average speed driving <u>to</u> the airport (in mph)
⇒ v + 15 = average speed driving <u>from</u> the airport (in mph)
Using: distance = speed x time

Create two equations for the journey to and from the airport, given that the distance one way is 18 miles:

We are told that the total driving time is 1 hour, so the sum of these expressions equals 1 hour:

Now all we have to do is solve the equation for v:







As v is positive, v = 30 only
So the average speed driving to the airport was 30 mph
(and the average speed driving from the airport was 45 mph)