Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
The pressure reduces to 2.588 bars.
Explanation:
According to Bernoulli's theorem for ideal flow we have

Since the losses are neglected thus applying this theorm between upper and lower porion we have

Now by continuity equation we have

Applying the values in the Bernoulli's equation we get

Answer:
450,000m = 450km = 4.5E5
32,600,000W = 32.6MW = 3.26E7
59,700,000,000cal = 59.7Gcal = 5.97E10
0.000000083s = 83ns = 8.3E-8
35,000Ω = 35kΩ = 3.5E4
Explanation:
Giga = 1,000,000,000
Mega = 1,000,000
kilo = 1,000
unit = 1
deci = .1
centi = .01
milli = .001
micro = .000001
nano = .0000000001
pico = .000000000001
You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.
Answer: you can watch a video on how to solve this question on you tube
Answer:
The current at t= 0 sec, is 0 A
The current at t= 0.5 sec, is 2.2 A
The current at t= 1 sec, is 4.4 A
Explanation:
Given that
q(t) = 2.2 t²
We know that:- the change in the charge w.r.t. time is known as current. So,

q(t) = 2.2 t²

I= 4.4 t
1.
t = 0 s :
I = 4.4 x 0 = 0 A
<u>Therefore, the current at t= 0 sec, is 0 A</u>
2 .
t= 0.5 s :
I = 4.4 x 0.5 = 2.2 A
<u>Therefore, the current at t= 0.5 sec, is 2.2 A</u>
3.
t= 1 s
I = 4.4 x 1 =4.4 A
<u>Therefore, the current at t= 1 sec, is 4.4 A</u>