Answer:
-50.005 KJ
Explanation:
Mass flow rate = 0.147 KJ per kg
mass= 10 kg
Δh= 50 m
Δv= 15 m/s
W= 10×0.147= 1.47 KJ
Δu= -5 kJ/kg
ΔKE + ΔPE+ ΔU= Q-W
0.5×m×(30^2- 15^2)+ mgΔh+mΔu= Q-W
Q= W+ 0.5×m×(30^2- 15^2) +mgΔh+mΔu
= 1.47 +0.5×1/100×(30^2- 15^2)-9.7×50/1000-50
= 1.47 +3.375-4.8450-50
Q=-50.005 KJ
Answer:
3D printing
Explanation:
The developments in technology, infrastructure, systems and technology mean that 3D printing will soon become a production technology. The market penetration of 3D printing would inevitably rise over time, with certain categories almost completely transitioning to 3D printing, such as digital publishing.
Answer:

Explanation:
Hello,
In this case, the coefficient of performance of this refrigerator is defined in terms of the removed heat and the work input as:

Moreover, the rate of heat rejection to the outside air tuns out:

Best regards.
Answer:
The air pressure in the tank is 53.9 
Solution:
As per the question:
Discharge rate, Q = 20 litres/ sec = 
(Since, 1 litre =
)
Diameter of the bore, d = 6 cm = 0.06 m
Head loss due to friction, 
Height, 
Now,
The velocity in the bore is given by:


Now, using Bernoulli's eqn:
(1)
The velocity head is given by:

Now, by using energy conservation on the surface of water on the roof and that in the tank :



