Answer:
William Shockley, Walter Houser Brattain and John Bardeen.
Explanation:
It was built in 1947 and they won the novel peace prize in 1956
Answer:
Final mass of Argon= 2.46 kg
Explanation:
Initial mass of Argon gas ( M1 ) = 4 kg
P1 = 450 kPa
T1 = 30°C = 303 K
P2 = 200 kPa
k ( specific heat ratio of Argon ) = 1.667
assuming a reversible adiabatic process
<u>Calculate the value of the M2 </u>
Applying ideal gas equation ( PV = mRT )
P₁V / P₂V = m₁ RT₁ / m₂ RT₂
hence : m2 = P₂T₁ / P₁T₂ * m₁
= (200 * 303 ) / (450 * 219 ) * 4
= 2.46 kg
<em>Note: Calculation for T2 is attached below</em>
Answer:
Explanation:
There are three points in time we need to consider. At point 0, the mango begins to fall from the tree. At point 1, the mango reaches the top of the window. At point 2, the mango reaches the bottom of the window.
We are given the following information:
y₁ = 3 m
y₂ = 3 m − 2.4 m = 0.6 m
t₂ − t₁ = 0.4 s
a = -9.8 m/s²
t₀ = 0 s
v₀ = 0 m/s
We need to find y₀.
Use a constant acceleration equation:
y = y₀ + v₀ t + ½ at²
Evaluated at point 1:
3 = y₀ + (0) t₁ + ½ (-9.8) t₁²
3 = y₀ − 4.9 t₁²
Evaluated at point 2:
0.6 = y₀ + (0) t₂ + ½ (-9.8) t₂²
0.6 = y₀ − 4.9 t₂²
Solve for y₀ in the first equation and substitute into the second:
y₀ = 3 + 4.9 t₁²
0.6 = (3 + 4.9 t₁²) − 4.9 t₂²
0 = 2.4 + 4.9 (t₁² − t₂²)
We know t₂ = t₁ + 0.4:
0 = 2.4 + 4.9 (t₁² − (t₁ + 0.4)²)
0 = 2.4 + 4.9 (t₁² − (t₁² + 0.8 t₁ + 0.16))
0 = 2.4 + 4.9 (t₁² − t₁² − 0.8 t₁ − 0.16)
0 = 2.4 + 4.9 (-0.8 t₁ − 0.16)
0 = 2.4 − 3.92 t₁ − 0.784
0 = 1.616 − 3.92 t₁
t₁ = 0.412
Now we can plug this into the original equation and find y₀:
3 = y₀ − 4.9 t₁²
3 = y₀ − 4.9 (0.412)²
3 = y₀ − 0.83
y₀ = 3.83
Rounded to two significant figures, the height of the tree is 3.8 meters.