Answer:
1. False
2. True
3. True
4. True
5. False
Explanation:
Moment of a force is not a free vector. There are certain quantities along the line with which force is applied.
Force can be moved in any direction along the line of the action without changing the external reaction.
The magnitude of equivalent resultant force is distributed along the centroid point.
The resultant force of a couple force system is zero as it form opposite forces which balances off each other.
Answer:
It studies the process of technological change. Under the field of Technology Dynamics the process of technological change is explained by taking into account influences from "internal factors" as well as from "external factors
Explanation:
Answer:
Explanation:
There are a total of 6 states and 3 bits in this problem. Whenever the Reset button is pressed, RESET state is called otherwise the state according to the diagram is called. For the combination to be "01011", the input sequence has to be in the same order. If 0 is pressed instead of 1 in state "010", the last state of output ending with 0 will be called and likewise in all the states that follow.
Answer:
Go to explaination for the details of the answer.
Explanation:
In order to determine the lifetime (75 years) chronic daily exposure for each individual, we have to first state the terms of our equation:
CDI = Chronic Daily Intake
C= Chemical concentration
CR= Contact Rate
EFD= Exposure Frequency and Distribution
BW= Body Weight
AT = Average Time.
Having names our variables lets create the equations that will be used to derive our answers.
Please kindly check attachment for details of the answer.
Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:
From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.