1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr_godi [17]
3 years ago
9

When we utilize a visualization on paper/screen, that visualization is limited to exploring: Group of answer choices Relationshi

p among an infinite number of variables Relationship between a dependent and an independent variable As many variables as we can coherently communicate in 2 dimensions Relationship between two variables, x
Engineering
1 answer:
Mila [183]3 years ago
6 0

Answer:

As many variables as we can coherently communicate in 2 dimensions

Explanation:

Visualization is a descriptive analytical technique that enables people to see trends and dependencies of data with the aid of graphical information tools. Some of the examples of visualization techniques are pie charts, graphs, bar charts, maps, scatter plots, correlation matrices etc.

When we utilize a visualization on paper/screen, that visualization is limited to exploring as many variables as we can coherently communicate in 2-dimensions (2D).

You might be interested in
Write torsion equation and explain the importance of each components.<br>​
Elanso [62]
The equations are based on the following assumptions

1) The bar is straight and of uniform section
2) The material of the bar is has uniform properties.
3) The only loading is the applied torque which is applied normal to the axis of the bar.
4) The bar is stressed within its elastic limit.

Nomenclature

T = torque (Nm)
l = length of bar (m)
J = Polar moment of inertia.(Circular Sections) ( m^4)
J' = Polar moment of inertia.(Non circluar sections) ( m^4 )
K = Factor replacing J for non-circular sections.( m^4)
r = radial distance of point from center of section (m)
ro = radius of section OD (m)
τ = shear stress (N/m^2)
G Modulus of rigidity (N/m^2)
θ = angle of twist (radians)

4 0
3 years ago
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
If the head loss in a 30 m of length of a 75-mm-diameter pipe is 7.6 m for a given flow rate of water, what is the total drag fo
Stolb23 [73]

Answer:

526.5 KN

Explanation:

The total head loss in a pipe is a sum of pressure head, kinetic energy head and potential energy head.

But the pipe is assumed to be horizontal and the velocity through the pipe is constant, Hence the head loss is just pressure head.

h = (P₁/ρg) - (P₂/ρg) = (P₁ - P₂)/ρg

where ρ = density of the fluid and g = acceleration due to gravity

h = ΔP/ρg

ΔP = ρgh = 1000 × 9.8 × 7.6 = 74480 Pa

Drag force over the length of the pipe = Dynamic pressure drop over the length of the pipe × Area of the pipe that the fluid is in contact with

Dynamic pressure drop over the length of the pipe = ΔP = 74480 Pa

Area of the pipe that the fluid is in contact with = 2πrL = 2π × (0.075/2) × 30 = 7.069 m²

Drag Force = 74480 × 7.069 = 526468.1 N = 526.5 KN

3 0
3 years ago
Please help me I don’t understand
Lapatulllka [165]

Answer:

A battery changes chemical energy to <u>electrical</u> energy

A drum changes mechanical energy to <u>sound</u> energy

Explanation:

A battery is a device that stores chemical energy and converts it to electrical energy.

Beating a drum represents a mechanical to sound energy  conversion.

4 0
3 years ago
Read 2 more answers
Q2: The average water height of an ocean area is 2.5 m high and each wave lasts for an average period of 7 s. Determine (a) the
navik [9.2K]

Answer:

(a) 561.12 W/ m² (b) 196.39 MW

Explanation:

Solution

(a) Determine the energy and power of the wave per unit area

The energy per unit are of the wave is defined as:

E = 1 /16ρgH²

= 1/16 * 1025 kg/ m3* 9.81 m/s² * (2.5 m )²

=3927. 83 J/m²

Thus,

The power of the wave per unit area is,

P = E/ t

= 3927. 83 J/m² / 7 s = 561.12 W/ m²

(b) The average and work power output of a wave power plant

W = E * л * A

= 3927. 83 J/m² * 0.35 * 1 *10^6 m²

= 1374.74 MJ

Then,

The power produced by the wave for one km²

P = P * л * A

= 5612.12 W/m² * 0.35 * 1* 10^6 m²

=196.39 MW

8 0
3 years ago
Other questions:
  • Methane gas at 25°C, 1 atm enters a reactor operating at steady-state and burns with 80% theoretical air entering at 227°C, 1 at
    10·1 answer
  • If you were choosing between two strain gauges, one which has a single resistor in a bridge that varies and one that has two res
    11·1 answer
  • HELP<br><br><br>the overall width of a part is dimensioned as 3.00 ± 0.02. what is the tolerance
    14·2 answers
  • Consider two different types of motors. Motor A has a characteristic life of 4100 hours (based on a MTTF of 4650 hours) and a sh
    10·1 answer
  • A flow of 12 m/s passes through a 6 m wide, 2 m deep rectangular channel with a bed slope of 0. 001. If the mean velocity of flo
    12·1 answer
  • 4. Two technicians are discussing the evaporative emission monitor. Technician A says that serious monitor faults cause a blinki
    14·1 answer
  • Need Answers Quick!!!! What is the purpose of structural components such as frames, bearings, and mounts? A.) Connect two rotati
    9·1 answer
  • A beam of span L meters simply supported by the ends, carries a central load W. The beam section is shown in figure. If the maxi
    5·1 answer
  • How many meters per second is 100 meters and 10 seconds
    12·1 answer
  • Select the correct answer. Which of the following devices is a simple machine? A.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!