1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir2022 [97]
3 years ago
12

(35 points) This is a legit question that I have for a device FOR my homework.

Engineering
1 answer:
Troyanec [42]3 years ago
8 0
Sounds to me that it’s most likely locked up and you need a new one
You might be interested in
Calculate the availability of a system where the mean time between failures is 900 hours and the mean time to repair is 100 hour
Debora [2.8K]

Answer:

The availability of system will be 0.9

Explanation:

We have given mean time of failure = 900 hours

Mean time [to repair = 100 hour

We have to find availability of system

Availability of system is given by  \frac{mean\time\ of\ failure}{mean\ time\ of\ failure+mean\ time\ to\ repair}

So availability of system =\frac{900}{900+100}=\frac{900}{1000}=0.9

So the availability of system will be 0.9

7 0
3 years ago
What is the composition, in atom percent, of an alloy that contains 44.5 lbmof Ag, 83.7 lbmof Au, and 5.3 lbmof Cu? What is the
Vlad [161]

Answer:

rr

Explanation:

4 0
2 years ago
Mnsdcbjksdhkjhvdskjbvfdfkjbcv hjb dfkjbkjfvvfebjkhbvefgjdf
Julli [10]

Answer:

ik true eedcggftggggfffff

8 0
3 years ago
Read 2 more answers
Type the correct answer in the box. Spell all words correctly.
AVprozaik [17]

Answer:

Mechanical engineer? Thats my guess I didnt have alot of options sorry if I am wrong

Explanation:

3 0
3 years ago
For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu
bogdanovich [222]

Answer:

a)W=12.62 kJ/mol

b)W=12.59 kJ/mol

Explanation:

At T = 100 °C the second and third virial coefficients are

B = -242.5 cm^3 mol^-1

C = 25200 cm^6  mo1^-2

Now according isothermal work of one mole methyl gas is

W=-\int\limits^a_b {P} \, dV

a=v_2\\

b=v_1

from virial equation  

\frac{PV}{RT}=z=1+\frac{B}{V}+\frac{C}{V^2}\\   \\P=RT(1+\frac{B}{V} +\frac{C}{V^2})\frac{1}{V}\\

And  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=v_2\\

b=v_1

Now calculate V1 and V2 at given condition

\frac{P1V1}{RT} = 1+\frac{B}{v_1} +\frac{C}{v_1^2}

Substitute given values P_1\\ = 1 x 10^5 , T = 373.15 and given values of coefficients we get  

10^5(v_1)/8.314*373.15=1-242.5/v_1+25200/v_1^2

Solve for V1 by iterative or alternative cubic equation solver we get

v_1=30780 cm^3/mol

Similarly solve for state 2 at P2 = 50 bar we get  

v_1=241.33 cm^3/mol

Now  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=241.33

b=30780

After performing integration we get work done on the system is  

W=12.62 kJ/mol

(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get  

         dV=RT(-1/p^2+0+C')dP

Hence work done on the system is  

W=-\int\limits^a_b {P(RT(-1/p^2+0+C')} \, dP

a=v_2\\

b=v_1

by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work  

W=12.59 kJ/mol

The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series  

8 0
2 years ago
Other questions:
  • The following laboratory tests are performed on aggregate samples:a. Specific gravity and absorptionb. Soundnessc. Sieve analysi
    13·1 answer
  • Which process is a from of mechanical weathering
    8·1 answer
  • Which of the following should NOT be included in an emergency kit?
    13·2 answers
  • Global Courier Services will ship your package based on how much it weighs and how far you are sending the package. Packages abo
    14·1 answer
  • The beam is supported by a pin at A and a roller at B which has negligible weight and a radius of 15 mm. If the coefficient of s
    7·1 answer
  • Which statement describes the relay between minerals and rocks ?
    15·1 answer
  • A life cycle assessment (LCA) determines the environmental impact at all stages of a product's life cycle, including production,
    12·1 answer
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
  • Three bars each made of different materials are connected together and placed between two walls when the temperature is 12 oC. D
    9·1 answer
  • The percentage modulation of AM changes from 50% to 70%. Originally at 50% modulation, carrier power was 70 W. Now, determine th
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!