Explanation:
<u>-how long it takes for the voltage-gatedNa+ channels to close at the end of an action potential</u>
Neurons have unique structures which aid in facilitating communication by sending and receiving electrical signals very efficient.
The refractory period describes a period between the initiation of an action potential where Na+ channels are closed, and immediately after the action potential’s peak. Action potentials would require an influx of more positively charged ions; these must be more than a specific threshold in order to have the cells send along more action potentials which helps with figuring out stimulus intensity.
Potassium ions readily diffuse out of the cell more quickly than sodium due to the presence of more channels which allow for potassium leakage. The sodium pumps in neuronal membranes bring more Na+ than K+ ions into the cell; with every three sodium ions pumped out two potassium ions are brought in- this is in order to maintain the negatively charged membranes within the cell along with the resting potential.
Learn more about the autonomic nervous system at brainly.com/question/10386413
Learn more about neurotransmitters at brainly.com/question/9424160
Learn more about homeostasis at brainly.com/question/1601808
#LearnWithBrainly
C. If your hypothesis is proven then it eventually becomes true. The exact definition for scientific theory is an explanation that can be proved with repeated explanation.
The answer is <span>Disaccharides are different in structure because they are not made up of the same monosaccharides, and this gives them different properties.
Both sucrose and lactose are disaccharides, however, they are made up different monosaccharides:
Disaccharide = monosaccharide + monosaccharide
Sucrose = glucose + fructose
Lactose = glucose + </span>galactose
Since they have different structures, their characteristics and behaviour in chemical reactions must differ, too.
Answer:

Explanation:
The phospholipid bilayer is also known as the cell membrane. It covers cells and regulates the transport of substances. Certain ones can pass and others cannot, depending on certain factors like size and polarity.
Smaller substances tend to diffuse or move across the membrane quite easily. However, larger molecules have a much harder time. Many depend on special proteins embedded in the membrane. These are called transport proteins and they form a channel so large molecules can still move in or out of the cell.
So, salt, water, and fats do not contribute to the movement of larger molecules, but <u>channel or transport proteins do and choice A is correct. </u>
They both involve topics related to the natural world, and are both based on empirical evidence. <span />