Answer- 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Given - Number of moles of Al(NO3)3 - 4 moles
Number of moles of NaCl - 9 moles
Find - Maximum amount of AlCl3 produced during the reaction.
Solution - The complete reaction is - Al(NO3)3 + 3NaCl --> 3NaNO3 + AlCl3
To find the maximum amount of AlCl3 produced during the reaction, we need to find the limiting reagent.
Mole ratio Al(NO3)3 - 4/1 - 4
Mole ratio NaCl - 9/3 - 3
Thus, NaCl is the limiting reagent in the reaction.
Now, 3 moles of NaCl produces 1 mole of AlCl3
9 moles of NaCl will produce - 1/3*9 - 3 moles.
Weight of AlCl3 - 3*133.34 - 400 grams
Thus, 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
A solution is a mixture (solvent + solute) of 2 or more elements, for example chocolate milk.
A solvent is the base of the solution which dissovles a solute, for example milk.
A solute is what is dossolved by the solvent, for example chocolate powder.
Answer:
6
Explanation:
if you start with 12 atoms of carbon and its called the half life of carbon what is half of 12
Answer:
1160mg
Explanation:
Molarity = number of moles ÷ volume
According to the information in the question, molarity = 1.25 M, volume = 18.0 mL = 18/1000 = 0.018L
M = n/V
n = M × V
n = 1.25 × 0.018
n = 0.0225moles.
Using mole = mass/molar mass, to find the mass of lithium phosphide (Li3P)
Molar mass of Li3P = 6.9(3) + 31 = 51.7g/mol
mole = mass/molar mass
0.0225 = mass/51.7
mass = 1.16grams.
In milligrams (mg), mass of Li3P = 1.16 × 1000 = 1160mg
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16