Answer:
Product: ethyl L-valinate
Explanation:
If we want to understand what it is the molecule produced we have to an<u>alyze the reagents</u>. We have valine an <u>amino acid</u>, in this kind of compounds we have an <em>amine group</em> () and a <em>carboxylic acid</em> group (). Additionally, we have an <u>alcohol </u>() in the presence of HCl (a <u>strong acid</u>) in the first step, and a base ().
When we have an acid and an alcohol in a vessel we will have an <u>esterification reaction</u>. In other words, an ester is produced. As the <em>first step,</em> the oxygen in the C=O (in the carboxylic acid group) would be protonated. In the <em>second step</em>, the ethanol attacks the carbon in the C=O of the carboxylic acid group producing a new bond between the oxygen in the ethanol and the carbon in the carboxylic acid. In <em>step 3</em>, a proton is transferred to produce a better leaving group (). In <em>step 4</em>, a water molecule leaves the main structure to produce again the double bond C=O. <em>Finally</em>, a base () removes the hydrogen from the C=O bond to produce ethyl L-valinate
See figure 1
I hope it helps!
The energy change if 84.0 g of CaO react with excess water is 98KJ of heat is released.
calculation
heat = number of moles x delta H
delta H = - 65.2 Kj/mol
first find the number of moles of CaO reacted
moles = mass/molar mass
the molar mass of CaO = 40 + 16= 56 g/mol
mass = 84 g
moles therefore = 84 g/56 g/mol =1.5 moles
Heat is therefore = 1.5 moles x -65.2 = - 97.8 Kj = -98 Kj
since sign is negative the energy is released
Positively charged protons in the nucleus, hope this helps.
EASY AS PIE AND I LIKE PIE
Calcium iodide (CaI2) is an ionic bond, which means that electrons are transferred. In order for Ca to become the ion Ca2+, the calcium atom must lose 2 electrons. (Electrons have a negative charge, so when an atom loses 2 electrons, its ion becomes more positive.) In order for I to become the ion I1−, the iodine atom must gain 1 electron. (When an atom gains an electron, its ion will be more negative.) However, the formula for calcium iodide is CaI2 - there are 2 iodine ions present. This makes sense because the iodine ion has a charge of -1, so two iodine ions have to be present to cancel out the +2 charge of the calcium ion. Therefore, the calcium atom transfers 2 valence electrons, one to each iodine atom, to form the ionic bond.
IF WRONG, SORRY
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.