Answer:
(B)iology
Explanation:
Biology is a branch of science that studies about the living organisms.
Identical twins don't have the exact same chromatic make-up, the chances of a meteor hitting the earth within the next 60 seconds are higher than someone having the same chromatic make-up, hope this helps
I know that Penicillin is made from mold, and I think mold is a fungus but I'm not 100% positive.
B) After determining the optimum pH, they could vary the temperature of the environment to see if catalase is temperature specific
Enzymes are proteins which catalyze reactions by acting on substrates in order to speed up reactions- like the breakdown of large polysaccharides by amylase. Here, the enzyme catalase facilitates the breakdown of hydrogen peroxide into oxygen and hydrogen. Catalase specificity is affected by pH, temperature and the presence of inhibitors.
In temperatures beyond its optimal range, catalase may undergo changes to its physical structure called denaturation; when denatured, enzymes lose their ability to bind specifically to their substrate -i.e. substrate binding specificity is lost. H2O2 would no longer be able to bind to the active site, and thus would not be broken down.
Learn more about cellular life at brainly.com/question/11259903
Learn more about proteins and carbohydrates at brainly.com/question/10744528
#LearnWithBrainly
Answer:
Delta binds to the Notch receptor and this binding produces the cleavage of its intracellular domain, which subsequently enters into the cell nucleus to bind with a repressor in order to activate the transcription
Explanation:
The Notch signaling pathway is initiated when Notch receptors on the cell surface bind to the Delta ligand, which activates Notch signaling in cells next to it. In the receiving cell, Delta–Notch binding triggers the cleavage of the Notch intracellular domain called Nic (intracellular Notch). Subsequently, Nic enters into the cell nucleus where it releases repression on Suppressor of Hairless (Su(H)) class transcription factors, thereby activating the transcription of target genes.