Answer:
d. 100.0 J
Explanation:
To solve this problem we must use the theorem of work and energy conservation. This tells us that the mechanical energy in the final state is equal to the mechanical energy in the initial state plus the work done on a body. In this way we come to the following equation:
E₁ + W₁₋₂ = E₂
where:
E₁ = mechanical energy at state 1. [J] (units of Joules)
E₂ = mechanical energy at state 2. [J]
W₁₋₂ = work done from 1 to 2 [J]
We have to remember that mechanical energy is defined as the sum of potential energy plus kinetic energy.
The energy in the initial state is zero, since there is no movement of the hockey puck before imparting force. E₁ = 0.
The Work on the hockey puck is equal to:
W₁₋₂ = 100 [J]
100 = E₂
Since the ice rink is horizontal there is no potential energy, there is only kinetic energy
Ek = 100 [J]
It can be said that the work applied on the hockey puck turns into kinetic energy
Answer:
you just have to draw a line from the eye reflecting from the mirror to the object shown.
Explanation:
Dont come at me if its wrong. I think thats what their asking of you.
Answer:
<em>6.77m/s</em>
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses of the object
u1 and u2 are the velocities before collision
v is the final collision
Given
m1 = 300g = 0.3kg
u1 = 6.0m/s
m2 = 10g = 0.01kg
u2 = 30m/s
Required
The bird's speed immediately after swallowing v
Substitute the given values into the formula
m1u1 + m2u2 = (m1+m2)v
0.3(6) + 0.01(30) = (0.3+0.01)v
1.8+0.3 = 0.31v
2.1 = 0.31v
v = 2.1/0.31
<em>v = 6.77m/s</em>
<em>Hence the bird's speed immediately after swallowing is 6.77m/s</em>
The speed of a car travelling over a hill that has a radius of curvature should not exceed a certain speed other it will topple. This speed is related to the radius of curvature and the gravitational acceleration as shown below:
V^2 = Rg, where V = maximum speed, R = Radius of curvature, g = gravitational acceleration.
Substituting;
V = Sqrt (Rg) = Sqrt (120*9.81) = 34.31 m/s
Answer:
$55.6
Explanation:
sorry sorry sorry sorry sorry