Answer:
See below
Explanation:
Use Ideal Gas Law
PV = n RT using R = .082057366 l-atm/k-mol
T must be in Kelvin
solve for 'n'
.92 * 1.6 = n * .082057366 * 287
n = .0625 moles
then the mole weight: .0625 * x = .314
x = mole weight = 5.025 gm
"Systems with either very <u>low pressures or high temperatures</u> enable real gases to be estimated as “ideal.” "
<u>Given:</u>
Mass of H2O2 solution = 5.02 g
Mass of H2O2 = 0.153 g
<u>To determine: </u>
The % H2O2 in solution
<u>Explanation:</u>
Chemical reaction-
2H2O2(l) → 2H2O(l) + O2(g)
Mass % of a substance in a solution = (Mass of the substance/Mass of solution) * 100
In this case
% H2O2 = (Mass H2O2/Mass of solution)* 100 = (0.153/5.02)*100 = 3.05%
Ans: % H2O2 in the solution = 3.05%
can you upload a clearer photo?
Answer:
The sphere on the left has the most inertia because it has more mass.
Explanation:
Inertia is a property of matter of a substance.
According to Newton's first law of motion, a body continues to stay in the state of rest or constant velocity unless acted upon a external force.
The amount of inertia that an object possess is proportional to the mass of the object.
The sphere on the left is of 300 kg and that on the right is of 30 kg.
Clearly, the sphere on the left has more mass.
Therefore, the sphere on the left has the most inertia.
Zero...bcz force which acts on this charge is f=qvB q=2uc ,B=2T and v=o
so,f=zero...