Answer:
Option (1) Br– is the catalyst, and the reaction follows a faster pathway with Br– than without
Explanation:
Let us consider the equation below:
Step 1:
H2O2(aq) + Br–(aq) → H2O(l) + BrO–(aq)
Step 2:
BrO–(aq) + H2O2(aq) → H2O(l) + O2(g) + Br–(aq)
From the above equation, we can see that Br– is unchanged.
This implies that Br– is the catalyst as catalyst does not take part in a chemical reaction but they create an alternate pathway to lower the activation energy in order for the reaction to proceed at a much faster rate to arrive at the products.
I think the answer would be A because O is oxygen and it has 7. Although it’s in parentheses and has a 2 on the outside of those parentheses, so you would multiply and 7 x 2 = 14. 14 is larger than the other ones.
Hopefully I’m right and hopefully that helps.
Answer:
36.55kJ/mol
Explanation:
The heat of solution is the change in heat when the KNO3 dissolves in water:
KNO3(aq) → K+(aq) + NO3-(aq)
As the temperature decreases, the reaction is endothermic and the molar heat of solution is positive.
To solve the molar heat we need to find the moles of KNO3 dissolved and the change in heat as follows:
<em>Moles KNO3 -Molar mass: 101.1032g/mol-</em>
10.6g * (1mol/101.1032g) = 0.1048 moles KNO3
<em>Change in heat:</em>
q = m*S*ΔT
<em>Where q is heat in J,</em>
<em>m is the mass of the solution: 10.6g + 251.0g = 261.6g</em>
S is specififc heat of solution: 4.184J/g°C -Assuming is the same than pure water-
And ΔT is change in temperature: 25°C - 21.5°C = 3.5°C
q = 261.6g*4.184J/g°C*3.5°C
q = 3830.87J
<em>Molar heat of solution:</em>
3830.87J/0.1048 moles KNO3 =
36554J/mol =
<h3>36.55kJ/mol</h3>
<em />
Answer:
Resonance Structures for SCN-:[S-C N]-
Resonance StructureEnergy (kJ/mol)[S-C N]--23.00[S=C=N]
<span>LiOH+HBr---> LiBr +h20. Moles of LiOH = 10/24 = 0.41moles. According to stoichiometry, moles of LiOH = moles of LiBr = 0.41moles. Therefore mass of LiBr =moles of LiBr x molecular weight of LiBr = o.41 x 87 = 35.67g. Hope it helps </span>