Answer:
C. 1.17 grams
Explanation:
- The molarity is the no. of moles of solute in a 1.0 L of the solution.
<em>M = (mass/molar mass)solute x (1000/ V)</em>
M = 0.1 M, mass = ??? g, molar mass of NaCl = 58.44 g/mol, V = 200.0 mL.
∴ mass of NaCl = (M)(molar mass)(V)/1000 = (0.1 M)(58.44 g/mol)(200.0 mL)/1000 = 1.168 g ≅ 1.17 g.
The correct answer is: [A]: "<span>points with the same elevation" .
________________________________________________________</span>
Answer:
pH = 13.18
Explanation:
pOH = -log[OH-] = -log(0.15) = 0.82
pH + pOH = 14
pH = 14 - 0.82 = 13.18
<h3>
Answer:</h3>
3.5 Newton
<h3>
Explanation:</h3>
We are given;
Mass of the ball = 140 g
Acceleration = 25 m/s²
Required to find the force;
- According to Newton's second law of motion, the resultant force on a body in motion and the rate of change in linear momentum are directly proportional.
- That is;
- Thus; F = ma , where F is the resultant force, m is the mass and a is the acceleration.
To get the force we substitute the value of m and a in the formula;
Therefore;
F = 0.14 kg × 25 m/s²
= 3.5 N
Hence, the force needed to accelerate the ball is 3.5 N
Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)