Mutation affects can be different just with changes as small as the substitution of a single DNA building block or nucleotide base with another nucleotide base
Answer:
In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases of that substance coexist in thermodynamic equilibrium. It is that temperatureand pressure at which the sublimation curve, fusion curve and vaporisation curve meet.
Suppose we have 100 gr of the substance. Then by weight, it would contain 44.77 gr of C, 7.46 gr of H and 47.76 gr of S. We need to look up the atomic weights of these atoms; M_H=1, M_C=12, M_S=32. The following formula holds (where n are the moles of the substance, M its molecular mass and m its mass): n=m/M. Substituting the known quantities for each element, we get that the substance has 3.73 moles of C, 7.46 moles of H and 1.49 moles of S. In the empirical formula for the molecule, all atoms appear an integer amout of times. Hence, for every mole of Sulfur, we have 2.5 moles of C and 5 moles of H (by taking the moles ratios). Thus, for every 2 moles of sulfur, we have 5 moles of C and 10 moles of H. Now that all the coefficients are integer, we have arrived at an empirical formula for the skunk spray agent:
Answer: 4.21×10⁻⁸
Explanation:
1) Assume a general equation for the ionization of the weak acid:
Let HA be the weak acid, then the ionization equation is:
HA ⇄ H⁺ + A⁻
2) Then, the expression for the ionization constant is:
Ka = [H⁺][A⁻] / [HA]
There, [H⁺] = [A⁻], and [HA] = 0.150 M (data given)
3) So, you need to determine [H⁺] which you do from the pH.
By definition, pH = - log [H⁺]
And from the data given pH = 4.1
⇒ 4.10 = - log [H⁺] ⇒ [H⁺] = antilog (- 4.10) = 7.94×10⁻⁵
4) Now you have all the values to calculate the expression for Ka:
ka = 7.94×10⁻⁵ × 7.94×10⁻⁵ / 0.150 = 4.21×10⁻⁸
The number of atoms of K that are in 235 g of the compound is
2.57 x10^24 atoms
calculation
Step 1: find the moles of K2S
= moles = mass/molar mass
= 235 g/110 g/mol= 2.136 moles
Step 2: multiply 2.136 moles by no. of K atoms in K2S
= 2.136 x2 = 4.272 moles
Step 3: use the Avogadro's law to determine number of K atoms
that is according to Avogadro's law 1 mole = 6.02 x 10^23 atoms
4.272 moles= ? atoms
by cross multiplication
= (4.272 moles x 6.02 x10^23 atoms) / 1 mole = 2.57 x10^24 atoms