Answer: 67 mmHg
Explanation:
According to Dalton's Gas Law, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 512 mmHg
P(oxygen) = 332 mmHg
P(carbon mono-oxide) = 113 mmHg
Remaining pressure (P3) = ?
To get P3, apply Dalton's Gas Law formula
Ptotal = P(oxygen) + P(carbon mono-oxide) + P3
512 mmHg = 332 mmHg + 113 mmHg + P3
512 mmHg = 445 mmHg + P3
P3 = 512 mmHg - 445 mmHg
P3 = 67 mmHg
Thus, the remaining pressure is 67 mmHg
Answer:
Potassium is more reactive than aluminium, so no reaction takes place. But aluminium is more reactive than copper, so it replaces the copper in copper nitrate
<h3>Explanation:</h3>
More reactive metal compound + less reactive metal
-> no reaction
However
Less reactive metal compound + more reactive metal
-> more reactive metal compound + less reactive metal
This is called substitution reaction where the more reactive metal replaces the less reactive metal in the compound.
Answer:
Strong acid breaks up into ions
Explanation:
It would be endothermic because the log is in the system.
Answer:
- 278.85 J
Explanation:
Given that:
Pressure = 1.1 atm
The initial volume V₁ = 0.0 L
The final volume V₂ = 2.5 L
The work that takes place in a reaction at constant pressure can be expressed by using the equation:
W = P(V₂ - V₁ )
Since the volume of the gas is expanded from 0 to 2.5 L when 1.1 atm pressure is applied. Then, the work can be given by the expression:
W = - P(V₂ - V₁ )
W = -1.1 atm ( 2.5 - 0.0) L
W = -1.1 atm (2.5 L)
W = -2.75 atm L
Recall that:
1 atm L = 101.4 J
Therefore;
-2.75 atm L = ( -2.75 × 101.4 )J
= -278.85 J
Thus, the work required at the chemical reaction when the pressure applied is 1.1 atm = - 278.85 J