Answer:
The kinetic energy is 
Explanation:
From the question we are told that
The radius of the orbit is 
The gravitational force is 
The kinetic energy of the satellite is mathematically represented as

where v is the speed of the satellite which is mathematically represented as

=> 
substituting this into the equation

Now the gravitational force of the planet is mathematically represented as

Where M is the mass of the planet and m is the mass of the satellite
Now looking at the formula for KE we see that we can represent it as
![KE = \frac{ 1}{2} *[\frac{GMm}{r^2}] * r](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B%201%7D%7B2%7D%20%2A%5B%5Cfrac%7BGMm%7D%7Br%5E2%7D%5D%20%2A%20r)
=> 
substituting values


A transmitter “encodes” or modulates messages by varying the amplitude or frequency of the wave – a bit like Morse code. At the other, a receiver tuned to the same wavelength picks up the signal and 'decodes' it back to the desired form
I think it’s A or D
An object's momentum is the product of its mass and its velocity:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
p = -80kg×m/s
m = 8kg
Plug in these values and solve for v:
-80 = 8v
v = -10m/s
Choice D
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
(a) The equation for the work done in stretching the spring from x1 to x2 is ¹/₂K₂Δx².
(b) The work done, in stretching the spring from x1 to x2 is 11.25 J.
(c) The work, necessary to stretch the spring from x = 0 to x3 is 64.28 J.
<h3>
Work done in the spring</h3>
The work done in stretching the spring is calculated as follows;
W = ¹/₂kx²
W(1 to 2) = ¹/₂K₂Δx²
W(1 to 2) = ¹/₂(250)(0.65 - 0.35)²
W(1 to 2) = 11.25 J
W(0 to 3) = ¹/₂k₁x₁² + ¹/₂k₂x₂² + ¹/₂F₃x₃
W(0 to 3) = ¹/₂(660)(0.35)² + ¹/₂(250)(0.65 - 0.35)² + ¹/₂(105)(0.89 - 0.65)
W(0 to 3) = 64.28 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1