I personally don't (I can't speak for others tho) but I say right twix is better for the memes
Answer:

Explanation:
Given that
Mass of rifle = M
Initial velocity ,u= 0
Mass of bullet = m
velocity of bullet = v
Lets take final speed of the rifle is V
There is no any external force ,that is why linear momentum of the system will be conserve.
Initial linear momentum = Final linear momentum
M x 0 + m x 0 = M x V + m v
0 = M x V + m v

Negative sign indicates that ,the recoil velocity will be opposite to the direction of bullet velocity.
The answer is A. Or the first option. Pressure is changed by lowering the pressure, not reducing the volume. You would assume its C but its A.
Answer:
A. 1.172 metres
B. 6.82 Ns
C. 4.796 m/s
Explanation:
The total initial momentum is gotten by multiplying the mass and initial velocity of the both bodies.
The 1.40 kg block is at rest so velocity is zero and has no momentum.
The bullet of mass 22 g = 0.022 kg with velocity of 310 m/s
Momentum = 310*0.022
Momentum = 6.82 Ns.
If the bullet gets embedded they will both have common velocity v
6.82 = (0.022+1.40)v
6.82 = 1.422v
V = 6.82/1.422
V = 4.796 m/s
How high the block will rise after the bullet is embedded is given by
H = (U²Sin²tita)/2g
Where tita is 90°
H = (4.796² * sin²(90))/(2*9.81)
H =( 23.001616*1)/19.62
H = 1.172 metres
<h3><u>Volume is 0.1848 m³</u></h3><h3 />
Explanation:
<h2>Given:</h2>
m = 49.9 kg
ρ = 270 kg/m³
<h2>Required:</h2>
volume
<h2>Equation:</h2>

where: ρ - density
m - mass
v - volume
<h2>Solution:</h2>
Substitute the value of ρ and m





<h2>Final Answer:</h2><h3><u>Volume is 0.1848 m³</u></h3>