Answer:
By Gaining Electrons
Explanation:
A nuetral atom is negative when it gains electrons, and it can be positive when it loses electrons.
This applies to nuclear reactions, specifically nuclear fission.
This huge release of energy has been used in atomic bombs and in the nuclear reactors that generate electricity.
Answer: Things continue doing what they are doing unless a force is applied to it. Objects have a natural tendency to resist change. This is INERTIA. Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects, so true
Explanation:
Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop. The Cadillac has more of a tendency to stay stationary (or continue moving), and resist a change in motion than a bicycle.
Answer:
1.8 s
Explanation:
Potential energy = kinetic energy + rotational energy
mgh = ½ mv² + ½ Iω²
For a thin spherical shell, I = ⅔ mr².
mgh = ½ mv² + ½ (⅔ mr²) ω²
mgh = ½ mv² + ⅓ mr²ω²
For rolling without slipping, v = ωr.
mgh = ½ mv² + ⅓ mv²
mgh = ⅚ mv²
gh = ⅚ v²
v = √(1.2gh)
v = √(1.2 × 9.81 m/s² × 4.8 m sin 39.4°)
v = 5.47 m/s
The acceleration down the incline is constant, so given:
Δx = 4.8 m
v₀ = 0 m/s
v = 5.47 m/s
Find: t
Δx = ½ (v + v₀) t
t = 2Δx / (v + v₀)
t = 2 (4.8 m) / (5.47 m/s + 0 m/s)
t = 1.76 s
Rounding to two significant figures, it takes 1.8 seconds.
Answer:
7.78 * 10³ m/s
Explanation:
Orbital velocity is given as:
v = √(GM/R)
G = 6.67 * 10^(-11) Nm/kg²
M = 5.98 * 10^(24) kg
R = radius of earth + distance of the satellite from the surface of the earth
R = 2.15 * 10^(5) + 6.38 * 10^(6)
R = 6.595 * 10^(6) m
v = √([6.67 * 10^(-11) * 5.98 * 10^(24)] / 6.595 * 10^(6))
v = √(6.048 * 10^7)
v = 7.78 * 10³ m/s