Answer:
a) 0 metres
b) From time 0 s to 10 s , the car was accelerated. Its velocity accelerated from 0m/s to 20 m/s
c) 20 m/s
Explanation:
a) <em>Formula of displacement= velocity x time</em>
time=40 s
velocity =0 m/s
∴ displacement= 0 x 40 = 0 m
Magnitude of displacement is 0 m
b) The increase in velocity shows that there has been acceleration.
c) The average velocity of the car is =
{initial velocity + final velocity}
=
=20
Therefore, the magnitude of the average velocity of the car is 20 m/s
Answer:
D) 735 J(oules)
Explanation:
Work is defined as force * distance
Force is defined as mass * acceleration
Given a mass of 15 kg and a gravitational acceleration of 9.8 m/s² since the box is being lifted up, the force being applied to the box is 15 kg * 9.8 m/s² = 147 N
Since the distance is 5 meters, the work done is 147 N * 5 m = 735 N/m = 735 J, making D the correct answer.
Answer:
7. They arethe meter (m), the kilogram (kg), the second (s), the kelvin (K), the ampere (A), the mole (mol), and the candela (cd)
Explanation:
7. They arethe meter (m), the kilogram (kg), the second (s), the kelvin (K), the ampere (A), the mole (mol), and the candela (cd)
Answer:

Explanation:
As the path is straight, so the speed is equivalent to velocity. Now. assuming that the acceleration and deceleration of the train are constant. So, change of velocity with respect to time for acceleration as well as deceleration is constant. Hence, the slope of the speed-time graph is constant for the time of acceleration as well as deceleration. The speed for the time from
to
is constant, so slope for this interval of time is zero. The speed-time graph is shown in the figure.
The total distance covered by the train during the entire journey is the area of the speed-time graph.
Area


As velocity is in
and time is in
so the unit of area is 
Hence, the total distance is
.
Answer:
A. a meteor traveling unhindered through space
Explanation: