Answer:
1.5 times
Explanation:
= depth of the diver initially = 5 m
= density of seawater = 1030 kg m⁻³
= Initial pressure at the depth
= final pressure after rising = 101325 Pa
Initial pressure at the depth is given as
= Initial volume at the depth
= Final volume after rising
Since the temperature remains constant, we have
Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
The best activity for her to do to improve her range of motion is flexibility.
<h3>What are a few range of motion illustrations?</h3>
The term the range of motion (ROM) describes the extent to which a joint or muscle may be moved or stretched. Everybody has a distinct experience. For instance, whereas some people can perform a complete split, others cannot because their joints are stiff and their muscles are unable to extend as far.
<h3>What restricts motion range?</h3>
A joint is said to have a restricted range of motion when it cannot move easily and completely in its typical position. A mechanical issue within the joint, swollen tissues around the joint, or pain may restrict motion.
To knoiw more about range of motion visit:
brainly.com/question/13403291
#SPJ1
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer:
(a) Angular acceleration is 1.112 rad/s².
(b) Average angular velocity is 2.78 rad/s .
Explanation:
The equation of motion in Rotational kinematics is:
θ = θ₀ + 0.5αt²
Here θ is angular displacement at time t, θ₀ is angular displacement at time t=0, t is time and α is constant angular acceleration.
(a) According to the problem, θ is 13.9 rad, θ₀ is zero as it is at rest and t is 5 s. Put these values in the above equation:
13.9 = 0 + 0.5α(5)²
α = 1.112 rad/s²
(b) The equation of average angular velocity is:
ω = Δθ/Δt
ω =
ω = 2.78 rad/s