The equation (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:
Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
- : is the initial velocity of the<em> lab cart </em>
- : is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
- : is the final velocity of the<em> lab cart </em>
- : is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:
When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:
Therefore, the equation represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
The value of the second charge is 1.2 nC.
<h3>
Electric potential</h3>
The work done in moving the charge from infinity to the given position is calculated as follows;
W = Eq₂
E = W/q₂
<h3>Magnitude of second charge</h3>
The magnitude of the second charge is determined by applying Coulomb's law.
Thus, the value of the second charge is 1.2 nC.
Learn more about electric potential here: brainly.com/question/14306881
Answer:
v= 1.71 m/s
Explanation:
Given that
Distance between two successive crests = 4.0 m
λ = 4 m
T= 7 sec
T is the time between 3 waves.
3 waves = 7 sec
1 wave = 7 /3 sec
So t= 7/3 s
We know that frequency f
f= 1/t= 3/7 Hz
Lets take speed of the wave is v
v= f λ
f=frequency
λ=wavelength
v= 3/7 x 4 = 12 /7
v= 1.71 m/s
Velocity = displacement/time
1.6 = 253/t
t = 158.125
It takes them about 158 seconds
Yes, but there is only 1 atom like that and is is hydrogen. Hydrogen is the only element that could have a nucleus with one proton and no neutrons exist.