<span>Answer: Correct answer is 507g FeCl2 x (1 mol FeCl2 / 126.8 g FeC2) x (1 mol Fe(OH)2 / 1 mol FeCl2) x (89.8 g Fe(OH)2/ 1 mol Fe(OH)2) = 359 g Fe(OH)2.</span>
Answer:
2.06 × 10⁻¹⁰
Explanation:
Let's consider the solution of a generic compound AB₂.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
We can relate the molar solubility (S) with the solubility product constant (Kps) using an ICE chart.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Kps = [A²⁺] × [B⁻]² = S × (2S)² = 4 × S³ = 4 × (3.72 × 10⁻⁴)³ = 2.06 × 10⁻¹⁰
The correct answer is A. It is uniform in composition and the parts that make up the mixture can be separated from one another through physical means.
Explanation:
In a homogeneous mixture, components are completely integrated, which means the final substance is uniform and the parts that compose it are not separated. This occurs in milk because this integrates uniformly water, fat, among others, and these elements cannot be observed separately.
Moreover, in mixtures, components can be separated through physical means; for example by heating the substances. This applies to milk because if it is heated water evaporates, and therefore can be separated.
The volume of the nitrous oxide gas is 1729.3 Liters
<h3>What is the number of moles of gas present in 3.40 kg of nitrous oxide?</h3>
The number of moles of gas present in 3.40 kg of nitrous oxide is determined from the formula below:
Numbers of moles = mass/molar mass
the mass of nitrous oxide = 3.40 kg or 3400 g
the molar mass of nitrous oxide = 44.013 g/mol
Moles of gas = 3400 / 44.013
Moles of gas = 77.25 moles
Using the ideal gas equation to determine the volume of the gas:
PV= nRT
V = nRT/P
where;
- V is the volume of gas
- n is the number of moles of gas
- R is molar Gas constant = 0.082 L.atm/mol/K
- T is the temperature of the gas
V = 77.25 * 0.082 * 273 / 1
The volume of the gas = 1729.3 Liters
Learn more about ideal gas equation at: brainly.com/question/20212888
#SPJ1