A. Large atoms have valence electrons farther from the nucleus and lose them more readily, so they are more reactive than small atoms.
For example, the valence electron of a small atom like Li is tightly held. <em>Lithium gently fizzes</em> on the surface as it reacts with the water to produce hydrogen.
In contrast, the valence electron of a large atom like Cs is so loosely held that <em>cesium exlodes </em>on contact with water.
For it to be the same element it must contain the same number of protons
Answer:
moles of glucose
<u>2.3166 moles of glucose</u>
<u></u>
Explanation:
The balance reaction for the formation of glucose is :

here , CO2 = carbon dioxide
H2O = water
C6H12O6 = glucose
O2 = Oxygen
According to this equation :
6 mole of CO2 = 6 mole of H2O = 1 mole of C6H12O6 = 6 mole of O2
We are asked to calculate the mole of Glucose from carbon dioxide.
So,
6 mole of CO2 produce = 1 mole of C6H12O6
1 mole of CO2 will produce =
moles of glucose
13.9 moles of CO2 will produce :

=2.3166 moles of glucose
Note : first , Always calculate for one mole (By dividing)
. After this , multiply the answer with the moles given.
Always write the substance whose amount is asked(glucose) to the right hand side
Answer:
The dam disrupts the river wildlife and ecosystem.
Explanation:
Though it is believed that using the dam as a power generation or hydroelectric power supply generates no greenhouse gases, it, however, has many disadvantages which make it deemed not suitable or sustainable for use in the contemporary time.
Majorly, the top reason why more hydroelectric dams are not built is that "the dam disrupts the river wildlife and ecosystem."
Also, it affects the water quality and other use of water for humans such as recreational use.
There is also a possible chance of dams producing methane; a greenhouse gas through the organic materials in the water that is rotting.
<span>Answer: option B. 3.07 g
Explanation:
1) given reaction:
S(s) + O₂ (g) → SO(g)
2) Balanced chemical equation:
</span><span>2S(s) + O₂ (g) → 2SO(g)
3) Theoretical mole ratios:
2 mol S : 1 mol O₂ : 2 mol SO
3) number of moles of 4.5 liter SO₂ at</span><span> 300°C and 101 kPa
use the ideal gas equation:
pV = nRT
with V = 4.5 liter
p = 101 kPa
T = 300 + 273.15 K = 573.15 K
R = 8.314 liter×kPa / (mol×K)
=> n = pV / (RT) =
n = [101 kPa × 4.5 liter] / [8.314 (liter×kPa) / (mol×K) × 573.15 K ]
n = 0.0954 mol SO
4) proportion with the theoretical ratio S / SO
2 mol S x
-------------- = ----------------------
2 mol SO 0.0954 mol SO
=> x = 0.0954 mol S.
5) Convert mol of S to grams by using atomic mass of S = 32.065 g/mol
mass = number of moles × atomic mass
mass = 0.0954 mol × 32.065 g/mol = 3.059 g of S
6) Therefore the answer is the option B. 3.07 g
</span>