Answer:
It means the chemical entity is a radical
Explanation:
When we talk of unsaturation, we are referring to the number of pi-bonds in a chemical entity. The alkane, alkene and alkyne organic family are used to as common examples to explain the term unsaturation.
While alkynes have 3 bonds, it must be understood that they have 2 pi bonds only and as such their degree of saturation is two.
In the case of an alkene, there is only one single pi bond and as such the degree of unsaturation is 1.
Now in this case, we have a fractional 0.5 degree of unsaturation alongside the 3 to make a total of 3.5. So what’s the issue here?
The fractional part shows that the chemical entity we are dealing with here is a radical. While the integer 3 shows that there are 3 pi-bonds, the half pi bond remaining tells us that there is a missing electron on one of the atoms involved in the chemical bonding and as such, the 1/2 extra degree of unsaturation tends to tell us this.
Kindly recall that a radical is a chemical entity within which we have at the least an unpaired electron.
The enzymes and their respective substrates are as follows:
- Protease enzymes such as trypsin and chymotrypsin break down proteins
- Carbohydrate enzymes such amylase and maltase break down carbohydrates
- Lipase enzyme breaks down lipids.
In the small intestine, a protease enzyme known as chymotrypsin breaks down protein, pancreatic amylase breaks down carbohydrates, while pancreatic lipase breaks down lipids.
More on biological enzymes can be found here: brainly.com/question/12194042
Answer:
0.99 pounds
2,000 oz
0.423 cups
Explanation:
In order to convert this units we need to look up their equivalences.
1 g equals 0,0022 pounds approximately
Then we need to cross-multiply:

450 g equals 0.99 pounds approximately
We can do the same calculation for the other 2 ingredients
1 g equals 16 oz
Then (125 g x 16 oz) / 1 oz = 2,000 oz (or 500 4 oz)
1 cup equals 236.59 ml
Then (100 ml x 1 cup)/ 236.59 = 0.423 cups
The largest advantage of sodium-ion batteries is the high natural abundance of sodium. This could make commercial production of sodium-ion batteries less expensive than lithium-ion batteries. As of 2020, sodium ion batteries have very little share of the battery market.