Covalent bonds or interactions are overcome when a nonmetal extended network melts.
Typically, nonmetals form covalent bonds with one another. A polyatomic ion's atoms are joined by a form of link called covalent bonding. A covalent bond requires two electrons, one from each of the two atoms that are connecting.
One technique to depict the formation of covalent connections between atoms is with Lewis dot formations. The number of unpaired electrons and the number of bonds that can be formed by each element are typically identical. Each element needs to share an unpaired electron in order to establish a covalent bond.
Therefore, covalent bonds or interactions are overcome when a nonmetal extended network melts.
Learn more about covalent bonds here;
brainly.com/question/10777799
#SPJ4
B- 8.2980
C- 11.2603
F- 17.4228
Li- 5.3917
Na- 5.1391
I would say your answer is Na.
Answer:
30 g of magnesium would be combined with 20 g of oxygen. The law used solving this problem is the Lavoisier Law of conservation of mass.
Explanation:
If 60 g of magnesium combines with 40 g of oxygen to make 100 g of magnesium oxide, then 30 g of magnesium will combine with 20 g of oxygen to make 50 g of magnesium oxide.
This happens because in a chemical reaction there is no creation or descruction of atoms, only a rearrangement. Therefore, the mass of reactants should be equal to the mass of products.
The following equation represents the proportions of the substances:
Mg + 1/2O₂ → MgO
Lithium, sodium, potassium, rubidium, cesium, and francium
Answer is: C. nuclear fission.
Nuclear fission is a nuclear reaction or a radioactive decay where nucleus of atom split into smaller ligher nuclei.
Nuclear fission is exothermic reaction which release large amounts of energy (electromagnetic radiation or as kinetic energy, which heat reactors where fission reaction take place).