Find the value of W that makes quadrilateral PQRS a parallelogram.
1 answer:
to be a parallelogram its front sides must be equal to each other
so, we equalize the length of two sides that are face to face
![\begin{gathered} 5w-25=w+15 \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%205w-25%3Dw%2B15%20%5C%5C%20%20%5C%5C%20%20%5Cend%7Bgathered%7D)
and solve for w
![\begin{gathered} 5w-w=15+25 \\ 4w=40 \\ w=\frac{40}{4} \\ \\ w=10 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%205w-w%3D15%2B25%20%5C%5C%204w%3D40%20%5C%5C%20w%3D%5Cfrac%7B40%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20w%3D10%20%5Cend%7Bgathered%7D)
the value of w must be 10
You might be interested in
The answer is the third one
Hope this helps! :)
Answer:
2:3
Step-by-step explanation:
The common factor between 10 and 15 is 5.
5 goes into 10 twice and 15 three times.
÷ ![\frac{5}{5} = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B5%7D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
Answer:
i
Step-by-step explanation: