Answer:
Opción b, P(2) = 0
Step-by-step explanation:
Tenemos la expresión:
P(y) = y^2 - 7*y + 10
Para encontrar el valor P(2), simplemente debemos remplazar todas las "y" en la expresión de arriba por el valor 2, asi obtenemos:
P(2) = 2^2 - 7*2 + 10 = 4 - 14 + 10 = (4 - 14) + 10 = -10 + 10 = 0
P(2) = 0
La opción correcta es b.
Given a variable, x, the compound ineaquality representing the range from a to b inclusive of the variable is given by

where a is the least value and b is the greatest value.
Thus, given a variable f, representing the frequencies for the three octaves of a <span>typical acoustic guitar.
</span>
Where the range of the frequencies is between 82.4 Hertz and 659.2 Hertz inclusive.
The complex inequality, representing <span>the range of frequencies for a guitar tuned to "concert pitch"</span> is given by
Answer:

Step-by-step explanation:


All quadrilaterals should have 360 degrees.