Answer:
Substances can change phase—often because of a temperature change. At low temperatures, most substances are solid; as the temperature increases, they become liquid; at higher temperatures still, they become gaseous.
The process of a solid becoming a liquid is called melting. (an older term that you may see sometimes is fusion). The opposite process, a liquid becoming a solid, is called solidification. For any pure substance, the temperature at which melting occurs—known as the melting point—is a characteristic of that substance. It requires energy for a solid to melt into a liquid. Every pure substance has a certain amount of energy it needs to change from a solid to a liquid. This amount is called the enthalpy of fusion (or heat of fusion) of the substance, represented as ΔHfus. Some ΔHfus values are listed in Table 10.2 “Enthalpies of Fusion for Various Substances”; it is assumed that these values are for the melting point of the substance. Note that the unit of ΔHfus is kilojoules per mole, so we need to know the quantity of material to know how much energy is involved. The ΔHfus is always tabulated as a positive number. However, it can be used for both the melting and the solidification processes as long as you keep in mind that melting is always endothermic (so ΔH will be positive), while solidification is always exothermic (so ΔH will be negative).
Answer:
The maximum amount of work that can be done by this system is -2.71 kJ/mol
Explanation:
Maximum amount of work denoted change in gibbs free energy
during the reaction.
Equilibrium concentration of B = 0.357 M
So equilibrium concentration of A = (1-0.357) M = 0.643 M
So equilibrium constant at 253 K, ![K_{eq}= \frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%20%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
[A] and [B] represent equilibrium concentrations

When concentration of A = 0.867 M then B = (1-0.867) M = 0.133 M
So reaction quotient at this situation, 
We know, 
where R is gas constant and T is temperature in kelvin
Here R is 8.314 J/(mol.K), T is 253 K, Q is 0.153 and
is 0.555
So, 
= -2710 J/mol
= -2.71 kJ/mol
Cl is highly electronegative and will actually pull away 1 electron from sodium, forming an ionic bond.
Answer:
Option (C) 1.30 moles
Explanation:
The following data were obtained from the question:
Volume (V) = 20L
Temperature (T) = 373K
Pressure (P) = 203 kPa
Gas constant (R) = 8.31 L.kPa/mol.K.
Number of mole (n) =...?
The number of mole of the gas in the container can obtained by applying the ideal gas equation as illustrated below:
PV = nRT
Divide both side by RT
n = PV /RT
n = 203 x 20 / 8.31 x 373
n = 1.30 mole.
Therefore, 1.30 mole of the gas is present in the container.