Step-by-step explanation:
m=-2
y+5=2(x-6)
y+5=2x-12
y=2x-17
Answer:
Range tells you how high and low the graph of this parabola goes in the “y” (vertical) directions.
1. We can see that the parabola peaks on the y-axis at y = 4. That’s as HIGH as it goes.
2. We also see that both sides of the parabola descend to the level of y = -7. That’s as LOW as it is shown to go.
So putting these together, we say the Range is given by:
-7 <= y <= 3
AMBIGUITY WARNING:
Because the two branches of the parabola go fall right down to the edge of the picture boundary, it’s UNCLEAR whether the parabola truly stops at y = -7 or CONTINUES on (to negative infinity).
In THAT case, the RANGE simplifies to:
Y <= 4
Done.
Step-by-step explanation:
Answer:
Answer is explained in the attached document
Step-by-step explanation:
Hessenberg matrix- it a special type of square matrix,there there are two subtypes of hessenberg matrix that is upper Hessenberg matrix and lower Hessenberg matrix.
upper Hessenberg matrix:- in this type of matrix zero entries below the first subdiagonal or in another words square matrix of n\times n is said to be in upper Hessenberg form if ai,j=0
for all i,j with i>j+1.and upper Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero
lower Hessenberg matrix:- in this type of matrix zero entries upper the first subdiagonal,square matrix of n\times n is said to be in lower Hessenberg form if ai,j=0 for all i,j with j>i+1.and lower Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero.
Well, the first line has a slope of -3, and runs through 0, -1.
a line parallel to that one, will have the same exact slope of -3.
now, we know about this other parallel line that it runs through -3,1, and of course, since is parallel, it has a slope of -3