Answer:
the first one is 15 & the second missing number is 8
multiply 15×5 & divide it by 5 & multiply 24×2 n divide it by 6
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111122222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333344444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555566666666666666666666666666666666666666666666666666666666666666666666666666666677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
I think it’s either C or A but more than likely C
Its A
3/7 + 2/3 = 23/21
and 23/21 as a mixed number is:
1 and 2/21
Answer:

Step-by-step explanation:
Let's call B at the base of the triangle and call h at the height of the triangle. Then we know that:
The height of a triangle is 5 cm shorter than its base. This means that:
.
The area of the triangle is 25 cm²
By definition the area of a triangle is:

For this triangle we know that
and
. We substitute these values in the equation and solve for B.


Now we use the quadratic formula to solve the equation.
For an equation of the form
the quadratic formula is:

In this case note that: 
Then:



The solutions are:


For this problem we take the positive solution.

Now we substitute the value of B in the equation to find the height h

