<span>A 50 kg student runs up a flight of stairs that is 6 m high. How much work is done? 3000 J. Calculate the work done when a force of 1 N moves a book 2 m. 2 J .... 200 W, 100 W. Calculate the power expended when a 500. N barbell is lifted 2.2 m in 2.0 seconds. 550 W. energy. the property of an object or system that ...</span>
Answer:
In a favorable reaction, the free energy of the products is less than the free energy of the reactants.
Explanation:
The free energy of a system is the amount of a system's internal energy that is available to perform work. The different forms of free energy include Gibbs free energy and Helmholtz free energy.
In a system at constant temperature and pressure, the energy that can be converted into work or the amount of usable energy in that system is known as Gibbs free energy. In a system at constant temperature and volume, the energy that can be converted into work is known as Helmholtz free energy.
The change in free energy of a system is the maximum usable energy that is released or absorbed by a system when it goes from the initial state (i.e., all reactants) to the final state (i.e., all products).
In a chemical reaction, some bonds in the reactants are broken by absorbing energy and new bonds are formed in the products by releasing energy. As the reaction proceeds, the free energy of reactants is much greater than the products. As the products are formed, the concentration of reactants decreases and the difference in their free energy also decreases. This chemical reaction will occur until chemical equilibrium is achieved i.e., the free energy of the products and reactants is equal and the difference in their free energy is zero.
Answer:
Final [B] = 1.665 M
Explanation:
3A + 4B → C + 2D
Average rection rate = 3[A]/Δt = 4[B]/Δt = [C]/Δt = 2[D]/Δt
0.05600 M/s = 4 [B]/ 2.50 s
[B] = 0.035 M (concentration of B consumed)
Final [B] = initial [B] - consumed [B]
Final [B] = 1.700 M - 0.035 M
Final [B] = 1.665 M
Well theres not a question but a covalent bond is when you share electrons.
Answer:
Covalent bond between identical atoms
Covalent bonds occur between identical atoms or between different atoms whose difference in electronegativity is insufficient to allow transfer of electrons to form ions. ... The two hydrogen atoms are attracted to the same pair of electrons in the covalent bond.