1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
3 years ago
9

Solve by using substitution 2x-5=-y x+3y=0

Mathematics
1 answer:
kirill115 [55]3 years ago
5 0

Answer:

(3,-1)

Step-by-step explanation:

1) Solve equation for y

2) Plug into other equation

3) Solve for x

4) Plug in the value found for x

5) Solve for y

You might be interested in
Which expression is equivalent to 3x + 2.5(4x + 2)?
Alex787 [66]

Answer:

I think its B

Step-by-step explanation:

Hope this helps:)

6 0
2 years ago
Read 2 more answers
20 points and brainliest <br> I’m in quiz in need it asap <br> Number 4
iren [92.7K]

Answer and step-by-step explanation:

The polar form of a complex number a+ib is the number re^{i\theta} where r = \sqrt{a^2+b^2} is called the modulus and \theta = tan^-^1 (\frac ba) is called the argument. You can switch back and forth between the two forms by either remembering the definitions or by graphing the number on Gauss plane. The advantage of using polar form is that when you multiply, divide or raise complex numbers in polar form you just multiply modules and add arguments.

(a) let's first calculate moduli and arguments

r_1 = \sqrt{(-2\sqrt3)^2+2^2}=\sqrt{12+4} = 4\\ \theta_1 = tan^-^1(\frac{2}{-2\sqrt3}) =-\pi/6\\r_2=\sqrt{1^2+1^2}=\sqrt2\\ \theta_2 = tan^-^1(\frac 11)= \pi/4

now we can write the two numbers as

z_1=4e^{-i\frac \pi6}; z_2=e^{i\frac\pi4}

(b) As noted above, the argument of the product is the sum of the arguments of the two numbers:

Arg(z_1\cdot z_2) = Arg(z_1)+Arg(z_2) = -\frac \pi6 + \frac \pi4 = \frac\pi{12}

(c) Similarly, when raising a complex number to any power, you raise the modulus to that power, and then multiply the argument for that value.

(z_1)^1^2=[4e^{-i\frac \pi6}]^1^2=4^1^2\cdot (e^{-i\frac \pi6})^1^2=2^2^4\cdot e^{-i(12)\frac\pi6}\\=2^2^4 e^{-i\cdot2\pi}=2^2^4

Now, in the last step I've used the fact that e^{i(2k\pi+x)} = e^i^x ; k\in \mathbb Z, or in other words, the complex exponential is periodic with 2\pi as a period, same as sine and cosine. You can further compute that power of two with the help of a calculator, it is around 16 million, or leave it as is.

7 0
2 years ago
ABC Corp. has outstanding accounts receivable totaling $6.5 million as of December 31 and sales on credit during the year of $24
Elden [556K]

Answer:

$378,000

Step-by-step explanation:

The computation of the bad debt expense for the year is shown below:

Bad debt expense = Outstanding account receivable × estimated percentage given - credit balance of allowance for doubtful account

= $6,500,000 × 0.06 - $12,000

= $390,000 - $12,000

= $378,000

We simply deduct the credit balance from the estimated balance so that the correct amount could arrive

3 0
3 years ago
What is 9 plus ten if you get it right you have to put your snap below
Ymorist [56]
21 hehehehehhehehehehehe
5 0
2 years ago
Find the 12th term of the geometric sequence 5, –25, 125, ...<br> HELP ASAP WILL NAME BRAINLEST
kodGreya [7K]

Step-by-step explanation:

U _{ {12}^{th} } = a {r}^{(n - 1)}  \\  = 5 \times  {5}^{12 - 1}  \\  = 244140625 \\  {12}^{th}  \: term \: is \: 244140625

3 0
2 years ago
Other questions:
  • What is the solution to y = x-3 × -1
    6·2 answers
  • Evaluate -10+ -8 x -1
    12·1 answer
  • 29, 20, 36, 44, 30, 32, and 40.
    7·2 answers
  • Widget Wonders produces widgets. They
    9·1 answer
  • Solve:<br> (4 × 6) ÷ (2 + 4) ÷ (8 ÷ 4) =
    7·1 answer
  • Select the correct answer.
    12·1 answer
  • Х+ Зу = -14<br> -4x-3y = 2<br> Help please
    14·1 answer
  • MAFS.912. G-GMD. 1.3
    6·1 answer
  • -3=t-5s<br> Solve for t<br> I need work shown and I’m so confused on this!!
    5·1 answer
  • Converting between scientific notation and standard form in a real-world situation
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!