I think the answer is x axis
Answer:
(a)
= 0.22 W
(b)
= 0.056 W
Explanation:
given information:
the mass of piano wire, m = 3.00 g = 0.003 kg
tension, F = 25 N
length, l = 80 cm = 0.8 m
frequency, f = 120 Hz
amplitude, A = 1.6 mm = 0.0016 m
(a) the average power carried by the wave, 
=
(√μF)ω²A²
where,
ω = 2πf = 2π120 = 754
μ = 
= 
= 0.00375 kg/m
thus,
=
(√(0.00375)(25))(754)²(0.0016)²
= 0.22 W
(b) What happens to the average power if the wave amplitude is halved.
based on the equation above, we know that the average power is proportional to the square amplitude. therefore


= 
= 0.056 W
Answer:
(B) Boundary work
(D) Heat
Explanation:
Boundary work and heat quantitatively describe the transition between equilibrium states of thermodynamic systems. They are not only a function of the initial and final states, but also of the successive intermediate states through which the system passes, this is, depend on the path taken to reach one state from another. Thus, are path functions.
Answer:
The heat flux between the surface of the pond and the surrounding air is<em> 60 W/</em>
<em> </em>
Explanation:
Heat flux is the rate at which heat energy moves across a surface, it is the heat transferred per unit area of the surface. This can be calculated using the expression in equation 1;
q = Q/A ...............................1
since we are working with the convectional heat transfer coefficient equation 1 become;
q = h (
) ........................2
where q is the heat flux;
Q is the heat energy that will be transferred;
h is the convectional heat coefficient = 20 W/
.K;
is the surface temperature =
C 23°C + 273.15 = 296.15 K;
is the surrounding temperature =
C = 20°C + 273.15 = 293.15 K;
The values are substituted into equation 2;
q = 20 W/
.K ( 296.15 K - 293.15 K)
q = 20 W/
.K ( 3 K)
q = 60 W/
Therefore the heat flux between the surface of the pond and the surrounding air is 60 W/
Answer:
kidney
Explanation:
thats where your pee goes through