<h3><u>Given :- </u></h3>
- Length of the rectangular wire, L=0.3 m
- Width of the rectangular wire, b=0.2m
- Magnetic field strength, B=0.8 T
- Velocity of the loop, v =12 m/s
- Induced Current, I = 3 A

(I) Emf developed,E in the loop is given as:



I = E/R
R = E/I
where
- R = resistance
- E = Induced EMF
- I = Current


(ii) The direction of current induced is from P to Q which is given by B × V vector . It may also be explained by Lenz law. Since magnetic field is from S to N . The fingers of the right hand are placed around the wire so that the curling of fingers will show the direction of the magnetic field produced by the wire then the thumb points in the direction of current flow which is from P to Q.
To write it in the form ai + bj, we need to find a and b
which are:
a = x component
b = y component
length of x = 9 – 2 = 7
length of y = 25 – 1 = 24
tan θ = 24 / 7
θ = 73.74°
a = (50 m/s) cos 73.74
a = 14 m/s
b = (50 m/s) sin 73.74
b = 48 m/s
Hence,
14i + 48j
By previous elements found in other stars, accurate guesses and lots of studying
This indicates that carob dioxide is a compound
Answer:
h = 2.64 meters
Explanation:
It is given that,
Mass of one ball, 
Speed of the first ball,
(upward)
Mass of the other ball, 
Speed of the other ball,
(downward)
We know that in an inelastic collision, after the collision, both objects move with one common speed. Let it is given by V. Using the conservation of momentum to find it as :


V = 7.2 m/s
Let h is the height reached by the combined balls of putty rise above the collision point. Using the conservation of energy as :



h = 2.64 meters
So, the height reached by the combined mass is 2.64 meters. Hence, this is the required solution.