Answer:
Ix - 950°C I ≤ 250°C
Step-by-step explanation:
We are told that the temperature may vary from 700 degrees Celsius to 1200 degrees Celsius.
And that this temperature is x.
This means that the minimum value of x is 700°C while maximum of x is 1200 °C
Let's find the average of the two temperature limits given:
x_avg = (700 + 1200)/2 =
x_avg = 1900/2
x_avg = 950 °C
Now let's find the distance between the average and either maximum or minimum.
d_avg = (1200 - 700)/2
d_avg = 500/2
d_avg = 250°C.
Now absolute value equation will be in the form of;
Ix - x_avgI ≤ d_avg
Thus;
Ix - 950°C I ≤ 250°C
I believe the answer is A. I'm not too sure though. How did I come to this conclusion? ¯\_(ツ)_/¯
Answer:
20579.53 will be your answer good sir.
Step-by-step explanation:
Answer:
-3a
Step-by-step explanation:
Ignore the variable since they are the same, apple and apples, and simply pay attention to the coefficient
To answer the question, you need to determine the amount Mr. Traeger has left to spend, then find the maximum number of outfits that will cost less than that remaining amount.
Spent so far:
... 273.98 + 3×7.23 +42.36 = 338.03
Remaining available funds:
... 500.00 -338.03 = 161.97
The cycling outfits are about $80 (slightly less), and this amount is about $160 (slightly more), which is 2 × $80.
Mr. Traeger can buy two (2) cycling outfits with the remaining money.
_____
The remaining money is 161.97/78.12 = 2.0733 times the cost of a cycling outfit. We're sure he has no interest in purchasing a fraction of an outfit, so he can afford to buy 2 outfits.