Explanation:
do we can say that the first step is finding the acceleration of the object. We do so by saying F = ma
so a = F/m
a = 500 m/s^2
we now have the time, acceleration and initial velocity.
so we can find the final velocity by using one of newtons equations which is: vf = vi + at
so:
vf = 0 + 500 × 12
vf = 6000
note that our initial velocity was zero since the object was initially at rest.
if you still have any doubt dont hesitate to ask for further help.
Answer:
I think its 9.0397 Ohms
Explanation:
take the reciprocal of all the resistances: 1/15, 1/65, 1/35
then add them: = 151/1365
then reciprocal the answer: =1365/151
And chuck it on a calculator: =9.04 Ohms
I think this is right but I'm not entirely sure. Tell me if I'm right by the way!
Answer:
Metal is more dense than water.
Explanation:
As we know, the molecules of the metal are tightly closed as compared to that of water and the density of a material is defined as the mass of the material per unit volume.
In a certain volume of metal, there are more numbers of molecules than that of water in the same amount of volume, therefore the density of metal is greater than that of water.
Also, according to Archimedes' principle, if there is an object in a fluid, then the buoyant force on that object is equal to the weight of the fluid that it displaces.
When the density of the object is larger than that of the fluid then it overcomes that buoyant force and sinks.
Thus, an object sinks in a fluid if its density is larger than that of the fluid and floats otherwise.
Since, the metal sink in water, it means Metal is more dense than water.
Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

Answer:
length of selfie-stick is 1.62 m
Explanation:
Given data
image size h1 = 5 mm = 5 ×
m
focal length = 4 mm = 4 ×
m
distance h2 = 2.032 m
to find out
How long of a selfie-stick
solution
here we find first magnification
that is M = h1 /h2
M = 5 ×
/ 2.032
M = 2.46 ×
and we know M = p/q
so p = Mq = 2.46 ×
q
so we apply lens formula
1/f = 1/p - 1/q
1/ 4 ×
= 1 / 2.46 ×
q - 1/q
q = 1.622 m
so length of selfie-stick is 1.62 m