1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
3 years ago
9

Which perspective is most directly involved with the study of how brain

Physics
1 answer:
daser333 [38]3 years ago
6 0

Answer:

biopsychlogy

Explanation:https://www.answers.com/Q/Which_perspective_is_most_directly_involved_with_the_study_of_how_brain_development_might_affect_behavior

You might be interested in
An iron ball and an aluminum ball of mass 100 g each are heated to the same temperature and then cooled to a temperature of 20°
Y_Kistochka [10]
Becaused it the thing was cod that why
4 0
2 years ago
What happens when a force exerted on an object cause the object to move?
Charra [1.4K]

Answer:

B. Kinetic energy is created

Explanation:

5 0
2 years ago
Read 2 more answers
develop a plan to test the hardness of a sample of feldspar using the following items glass plate copper penny and streak plate
Artemon [7]
Stroke then 3883 you choke <3333333333
6 0
2 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
The colour of star depend on its temperature, why?​
taurus [48]

<em>Another key factor that determines a star's colour is its temperature. As stars become hotter, the overall radiated energy increases, and the peak of the curve changes to shorter wavelengths. To put it another way, when a star heats up, the light it produces moves toward the blue end of the spectrum.</em>

4 0
2 years ago
Other questions:
  • If a 5 Kg ball is attached to the end of a string, and it has a velocity of 10 m/s, what is the centripetal acceleration if the
    7·1 answer
  • By which method does heat travel from the sun to Earth? A. Conduction B. Convection C. Evaporation D. Radiation
    6·2 answers
  • If the temperature of water warming on a hot plate rises 10 degrees Celsius [°C], what is the change in temperature in units of
    15·1 answer
  • You (85 kg) are standing on the horizontal surface at the top of a cliff. The coefficient of static friction between your feet a
    6·1 answer
  • Select the statements that describe a vector. Check all that apply
    7·2 answers
  • If you have a positive electrical force, and a negative electrical force, what do you expect will happen?
    8·1 answer
  • Explain this statement: Cells are the basic unit of structure and function in organisms.
    11·1 answer
  • Convert 50cm to metre​
    12·1 answer
  • I’ll love you forever if you help me &lt;3
    12·1 answer
  • How to find the mechanical advantage
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!