The answer for this is X+2g= 0
Answer:
Cos A=5/13
we have
Cos² A=
25/169=1-Sin²A
sin²A=1-25/169
sin²A=144/169
Sin A=
again
Tan B=4/3
P/b=4/3
p=4
b=3
h=
Now
Sin B=p/h=4/5
in IV quadrant sin angle is negative so
Sin B=-4/5
CosB=b/h=3/5
Now
<u>S</u><u>i</u><u>n</u><u>(</u><u>A</u><u>+</u><u>B</u><u>)</u><u>:</u><u>s</u><u>i</u><u>n</u><u>A</u><u>c</u><u>o</u><u>s</u><u>B</u><u>+</u><u>C</u><u>o</u><u>s</u><u>A</u><u>s</u><u>i</u><u>n</u><u>B</u>
<u>n</u><u>o</u><u>w</u><u> </u>
<u>substitute</u><u> </u><u>value</u>
<u>Sin(A+B):</u>12/13*3/5+5/13*(-4/5)=36/65-4/13
<u>=</u><u>1</u><u>6</u><u>/</u><u>6</u><u>5</u><u> </u><u>i</u><u>s</u><u> </u><u>a</u><u> </u><u>required</u><u> </u><u>answer</u>
The associative property states that we can add numbers in any way we want to still get the same sum, so the parenthesis here can essentially be tossed out to get 3x+2-5=3x-3. However, make sure, for example, that you don't add x and 1 together in 3(x)+1 as you still have to multiply the x with 3 before adding the 1 according to PEMDAS