It has to be the second one and it’s part of that answer or maybe it’s the third one
Answer:

Step-by-step explanation:
This is a conditional probability exercise.
Let's name the events :
I : ''A person is infected''
NI : ''A person is not infected''
PT : ''The test is positive''
NT : ''The test is negative''
The conditional probability equation is :
Given two events A and B :
P(A/B) = P(A ∩ B) / P(B)

P(A/B) is the probability of the event A given that the event B happened
P(A ∩ B) is the probability of the event (A ∩ B)
(A ∩ B) is the event where A and B happened at the same time
In the exercise :



We are looking for P(I/PT) :
P(I/PT)=P(I∩ PT)/ P(PT)

P(PT/I)=P(PT∩ I)/P(I)
0.904=P(PT∩ I)/0.025
P(PT∩ I)=0.904 x 0.025
P(PT∩ I) = 0.0226
P(PT/NI)=0.041
P(PT/NI)=P(PT∩ NI)/P(NI)
0.041=P(PT∩ NI)/0.975
P(PT∩ NI) = 0.041 x 0.975
P(PT∩ NI) = 0.039975
P(PT) = P(PT∩ I)+P(PT∩ NI)
P(PT)= 0.0226 + 0.039975
P(PT) = 0.062575
P(I/PT) = P(PT∩I)/P(PT)

Answer:
?????.... hii erica herrrr
OK so the cone's volume is 12.57 however, the cup's volume is only 12.27. So, if they're both $2.50 then i would get the cone because it has more volume.
Answer:
2,674.14 g
Step-by-step explanation:
Recall that the formula for radioactive decay is
N = N₀ e^(-λt)
where,
N is the amount left at time t
N₀ is the initial amount when t=0, (given as 42,784 g)
λ = coefficient of radioactive decay
= 0.693 ÷ Half Life
= 0.693 ÷ 18
= 0.0385
t = time elapsed (given as 72 years)
e = exponential constant ( approx 2.7183)
If we substitute these into our equation:
N = N₀ e^(-λt)
= (42,787) (2.7183)^[(-0.0385)(72)]
= (42,787) (2.7183)^(-2.7726)
= (42,787) (0.0625)
= 2,674.14 g