Answer:c
Explanation:
I think because ca^+2
It’s loses the ion and if u look back u would see that a cation is a t charge but it’s not Goan that electron it’s losing that electron
During endothermic phase change, the potential energy of the system always increases while the kinetic energy of the system remains constant. The potential energy of the reaction increases because energy is been added to the system from the external environment.
<u>Explanation</u>:
- Those are three distinct methods for demonstrating a specific energy condition of an object. They don't affect one another.
- "Potential Energy" is a relative term showing a release of possible energy to the environment. If we accept its pattern as the overall energy state of a compound, at that point, an endothermic phase change would infer an increase in "potential" as energy is being added to the compound by the system.
- A phase change will display an increase in the kinetic energy at whatever point the compound is transforming from a high density to a low dense phase. The kinetic energy will decrease at whatever point the compound is transforming from a less dense to high dense phase.
<em>Acetic acid, HC2H3O2</em>
First, calculate for the molar mass of acetic acid as shown below.
M = 1 + 2(12) + 3(1) + 2(16) = 60 g
Then, calculating for the percentages of each element.
<em> Hydrogen:</em>
P1 = ((4)(1)/60)(100%) = <em>6.67%</em>
<em> Carbon:</em>
P2 = ((2)(12)/60)(100%) = <em>40%</em>
<em>Oxygen</em>
P3 =((2)(16) / 60)(100%) = <em>53.33%</em>
<em>Glucose, C6H12O6</em>
The molar mass of glucose is as calculated below,
6(12) + 12(1) + 6(16) = 180
The percentages of the elements are as follow,
<em> Hydrogen:</em>
P1 = (12/180)(100%) = <em>6.67%</em>
<em>Carbon:</em>
P2 = ((6)(12) / 180)(100%) = <em>40%</em>
<em>Oxygen:</em>
P3 = ((6)(16) / 180)(100%) = <em>53.33%</em>
b. Since the empirical formula of the given substances are just the same and can be written as CH2O then, the percentages of each element composing them will just be equal.
Answer is 128.892 g.
moles (mol) = mass (g) / molar mass (g/mol)
According to the given data,
moles = 4.60 mol
mass = ?
molar mass = 28.02 g/mol
By substitution,
4.60 mol = mass / (28.02 g/mol)
mass = 4.60 mol x 28.02 g/mol
mass = 128.892 g
Hence, mass of 4.60 mol of N₂ is 128.892 g.