m ∠b = 133°, m ∠c = 47°, and m ∠d = 133°.
<h3>
Further explanation</h3>
Follow the attached picture. I sincerely hope that's precisely a correct illustration.
We will use a graph of two intersecting straight lines.
Note that m ∠a and m ∠c are vertical angles. Since vertical angles share the same measures, in other words always congruent, we see ![\boxed{ \ m \ \angle{c} = m \ \angle{a} \ } \rightarrow \boxed{\boxed{ \ m \ \angle{c} = 47^0 \ }}](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20m%20%5C%20%5Cangle%7Bc%7D%20%3D%20m%20%5C%20%5Cangle%7Ba%7D%20%5C%20%7D%20%5Crightarrow%20%5Cboxed%7B%5Cboxed%7B%20%5C%20m%20%5C%20%5Cangle%7Bc%7D%20%3D%2047%5E0%20%5C%20%7D%7D)
We continue to determine m ∠b and m ∠d.
Note that m ∠b and m ∠d represent supplementary angles. Recall that supplementary angles add up to 180°.
Let us see the following steps.
![\boxed{ \ m \ \angle{a} + m \ \angle{b} = 180^0. \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20m%20%5C%20%5Cangle%7Ba%7D%20%2B%20m%20%5C%20%5Cangle%7Bb%7D%20%3D%20180%5E0.%20%5C%20%7D)
![\boxed{ \ m \ 47^0 + m \ \angle{b} = 180^0. \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20m%20%5C%2047%5E0%20%2B%20m%20%5C%20%5Cangle%7Bb%7D%20%3D%20180%5E0.%20%5C%20%7D)
Both sides subtracted by 47°.
![\boxed{ \ m \ \angle{b} = 180^0 - 47^0. \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20m%20%5C%20%5Cangle%7Bb%7D%20%3D%20180%5E0%20-%2047%5E0.%20%5C%20%7D)
Thus ![\boxed{\boxed{ \ m \ \angle{b} = 133^0. \ }}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%20%5C%20m%20%5C%20%5Cangle%7Bb%7D%20%3D%20133%5E0.%20%5C%20%7D%7D)
Finally, note that m ∠b and m ∠d are vertical angles. Accordingly, ![\boxed{ \ m \ \angle{d} = m \ \angle{b} \ } \rightarrow \boxed{\boxed{ \ m \ \angle{d} = 133^0 \ }}](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20m%20%5C%20%5Cangle%7Bd%7D%20%3D%20m%20%5C%20%5Cangle%7Bb%7D%20%5C%20%7D%20%5Crightarrow%20%5Cboxed%7B%5Cboxed%7B%20%5C%20m%20%5C%20%5Cangle%7Bd%7D%20%3D%20133%5E0%20%5C%20%7D%7D)
<u>Conclusion:</u>
- m ∠a = 47°
- m ∠b = 133°
- m ∠c = 47°
- m ∠d = 133°
<u>Notes:</u>
- Supplementary angles are two angles when they add up to 180°.
![\boxed{ \ example: \angle{a} + \angle{b} = 180^0 \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20example%3A%20%5Cangle%7Ba%7D%20%2B%20%5Cangle%7Bb%7D%20%3D%20180%5E0%20%5C%20%7D)
- Vertical angles are the angles opposite each other when two lines cross. Note that vertical angles are always congruent, or of equal measure.
![\boxed{ \ example: \angle{a} = \angle{c} \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20example%3A%20%5Cangle%7Ba%7D%20%3D%20%5Cangle%7Bc%7D%20%5C%20%7D)
<h3>Learn more</h3>
- About the measure of the central angle brainly.com/question/2115496
- Undefined terms needed to define angles brainly.com/question/3717797
- Find out the measures of the two angles in a right triangle brainly.com/question/4302397
Keywords: m∠a = 47°, m∠b, m∠c, and m∠d, 133°, vertical angles, supplementary, 180°, congruent
According to me the probability is 1/4, because there are 4 possible outcomes when two coins are flipped - TT, TH, HT, HH.
<span>Also, would it matter if the coins are flipped one after other rather than together</span>
Answer:B
Step-by-step explanation:
Not sure but the math came out like that.
1/2 which can be simplified in many forms such as 4/8 or 3/6 or 6/12
Answer:
(0,5) and (1,0)
Step-by-step explanation: