1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
3 years ago
12

If you travel 200 miles in 300 minutes. Howfast did you travel in MPH...mile per hour?​

Mathematics
2 answers:
Alekssandra [29.7K]3 years ago
5 0

Answer:

40 miles per hour

Step-by-step explanation:

Change 300 minutes to hours.  There are 60 minutes to hours

300 minutes * 1 hour/ 60 minutes = 5 hours

Now take the miles and divide by hours

200 miles / 5 hours = 40 miles per hour

VMariaS [17]3 years ago
5 0

Answer: 40 mph

Step-by-step explanation: 300 minutes is 5 hours. 40 mph for 5 hours is 200 miles traveled.

You might be interested in
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
Please help me out with this question
I am Lyosha [343]

Answer:

no. 4

Step-by-step explanation:

6 0
3 years ago
Solve by using square root: <br> 4(x-1)^2+2=10
Scilla [17]
4(x-1)^2+2=10\\\\4(x^2-2x+1)+2-10=0\\\\4 x^2-8x+4+2-10=0\\\\4 x^2-8x-4=0\ \ / :4\\\\x^2-2x-1=0\\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{2-\sqrt{ (-2)^2-4*1*(-1)}}{2 }=\frac{2-\sqrt{ 8}}{2 }=\frac{2- \sqrt{ 4*2}}{2 }=\\\\=\frac{2-\sqrt{ 8}}{2 }=\frac{2(1- \sqrt{ 2})}{2 }=1- \sqrt{ 2}\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{2+\sqrt{ (-2)^2-4*1*(-1)}}{2 }=\frac{2(1+ \sqrt{ 2})}{2 }=1+ \sqrt{ 2}

Answer:\ x=1- \sqrt{2}\ \ or\ \ x= 1+ \sqrt{ 2}


3 0
3 years ago
Read 2 more answers
The perimeter of a rectangle is 26 meters. The difference between the length and the width is 5 meters. Find the width
Scilla [17]
Try making a substitution:
3 0
3 years ago
Pls help tyyyyyyyyyy
boyakko [2]
You got this don't worry
7 0
3 years ago
Other questions:
  • Find two positive numbers whose ratio is 2:3 and whose product is 600.
    12·1 answer
  • Help me solve this please. I don't know the formula for this.​
    15·1 answer
  • What is this answer equal to?
    11·1 answer
  • Is 4.375 times 10 to the -8 power a scientific notation
    5·1 answer
  • In the formula l=p+prt, what does l equal when p=500,r=20%, t=2
    13·1 answer
  • I need help finding if it’s either SOH, CAH or TOA and the indicated side of the triangle, thank you!
    15·1 answer
  • To find the quotient of 156.38 and 100, move the decimal point in 156.38 (two four three five) places to the (left,right)
    8·2 answers
  • Find the unit rate. 45 miles in 1/2 hour
    12·1 answer
  • Please do the bottom questions, I provided the rest.
    12·2 answers
  • 2x+5y how do i simplify this or do i just leave this as that
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!